Waste paper is a major contributor to municipal and industrial waste, and its recycle and reuse are a current challenge. The aim of this research is to convert waste paper into value-added cellulose films through rapid dissolution in pre-cooled H2SO4 aqueous solution. Two types of waste paper, office paper and cardboard, could be dissolved within 210 s. The regenerated office paper films were transparent, and exhibited excellent mechanical properties (tensile strength: 77.55 ± 6.52 MPa, elongation at break: 2.67 ± 0.30 %, and Young's modulus: 5451.67 ± 705.23 MPa), which were comparable to those of cellulose films prepared from spruce pulp in the same solvent. The mixed paper films showed a dramatically reduced UV transmittance due to the existence of lignin. Moreover, the regenerated films were a promising matrix to load antimicrobial compounds, and thus inhibited the growth of pathogenic bacteria. Therefore, this work provides a convenient way to directly convert waste paper into biodegradable antimicrobial packaging materials.
Keywords: Antimicrobial packaging; Cellulose; Rapid dissolution; Recycle; Sulfuric acid; Waste paper.
Copyright © 2020 Elsevier Ltd. All rights reserved.