Soil microbial succession following surface mining is governed primarily by deterministic factors

FEMS Microbiol Ecol. 2020 Nov 3;96(11):fiaa114. doi: 10.1093/femsec/fiaa114.

Abstract

Understanding the successional dynamics governing soil microbial community assembly following disturbance can aid in developing remediation strategies for disturbed land. However, the influences shaping microbial communities during succession following soil disturbance remain only partially understood. One example of a severe disturbance to soil is surface mining for natural resources, which displaces communities and changes the physical and chemical soil environment. These changes may alter community composition through selective pressure on microbial taxa (i.e. deterministic processes). Dispersal and ecological drift may also shape communities following disturbance (i.e. stochastic processes). Here, the relative influence of stochastic and deterministic processes on microbial community succession was investigated using a chronosequence of reclaimed surface mines ranging from 2-32 years post-reclamation. Sequencing of bacterial and fungal ribosomal gene amplicons coupled with a linear modeling approach revealed that following mine reclamation, while bacterial communities are modestly influenced by stochastic factors, the influence of deterministic factors was ∼7 × greater. Fungal communities were influenced only by deterministic factors. Soil organic matter, texture, and pH emerged as the most influential environmental factors on both bacterial and fungal communities. Our results suggest that management of deterministic soil characteristics over a sufficient time period could increase the microbial diversity and productivity of mine soils.

Keywords: chronosequence; deterministic; stochastic; succession; surface mining.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Bacteria / genetics
  • Microbiota*
  • Mining
  • Soil Microbiology
  • Soil*

Substances

  • Soil