Targeted Immunosuppression Distinguishes COVID-19 from Influenza in Moderate and Severe Disease

medRxiv. 2020 May 30;2020.05.28.20115667. doi: 10.1101/2020.05.28.20115667. Preprint


Coronavirus disease 2019 (COVID-19) is characterized by a high incidence of acute respiratory failure. The underlying immunopathology of that failure and how it compares to other causes of severe respiratory distress, such as influenza virus infection, are not fully understood. Here we addressed this by developing a prospective observational cohort of COVID-19 and influenza subjects with varying degrees of disease severity and assessing the quality and magnitude of their immune responses at the cellular and protein level. Additionally, we performed single-cell RNA transcriptional profiling of peripheral blood mononuclear cells from select subjects. The cohort consists of 79 COVID-19 subjects, 26 influenza subjects, and 15 control subjects, including 35 COVID-19 and 7 influenza subjects with acute respiratory failure. While COVID-19 subjects exhibited largely equivalent or greater activated lymphocyte counts compared to influenza subjects, they had fewer monocytes and lower surface HLA-class II expression on monocytes compared to influenza subjects and controls. At least two distinct immune profiles were observed by cytokine levels in severe COVID-19 patients: 3 of 71 patients were characterized by extreme inflammation, with greater than or equal to ~50% of the 35 cytokines measured greater than 2 standard deviations from the mean level of other severe patients (both influenza and COVID-19); the other immune profile, which characterized 68 of 71 subjects, had a mixed inflammatory signature, where 28 of 35 cytokines in COVID-19 patients had lower mean cytokine levels, though not all were statistically significant. Only 2 cytokines were higher in COVID-19 subjects compared to influenza subjects (IL-6 and IL-8). Influenza and COVID-19 patients could be distinguished statistically based on cytokine module expression, particularly after controlling for the significant effects of age on cytokine expression, but again with lower levels of most cytokines in COVID-19 subjects. Further, high circulating levels of IL-1RA and IL-6 were associated with increased odds of intubation in the combined influenza and COVID-19 cohort [OR = 3.93 and 4.30, respectively] as well as among only COVID-19 patients. Single cell transcriptional profiling of COVID-19 and influenza subjects with respiratory failure identified profound suppression in type I and type II interferon signaling in COVID-19 patients across multiple clusters. In contrast, COVID-19 cell clusters were enriched for alterations in metabolic, stress, and apoptotic pathways. These alterations were consistent with an increased glucocorticoid response in COVID-19 patients compared to influenza. When considered across the spectrum of innate and adaptive immune profiles, the immune pathologies underlying severe influenza and COVID-19 are substantially distinct. The majority of COVID-19 patients with acute respiratory failure do not have a cytokine storm phenotype but instead exhibit profound type I and type II IFN immunosuppression when compared to patients with acute influenza. Upregulation of a small number of inflammatory mediators, including IL-6, predicts acute respiratory failure in both COVID-19 and influenza patients.

Publication types

  • Preprint