Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Nov 1;36(17):4626-4632.
doi: 10.1093/bioinformatics/btaa563.

Screening novel drug candidates for Alzheimer's disease by an integrated network and transcriptome analysis

Affiliations

Screening novel drug candidates for Alzheimer's disease by an integrated network and transcriptome analysis

Yonglin Peng et al. Bioinformatics. .

Abstract

Motivation: Alzheimer's disease (AD) is a serious degenerative brain disease and the most common cause of dementia. The current available drugs for AD provide symptomatic benefit, but there is no effective drug to cure the disease. The emergence of large-scale genomic, pharmacological data provides new opportunities for drug discovery and drug repositioning as a promising strategy in searching novel drug for AD.

Results: In this study, we took advantage of our increasing understanding based on systems biology approaches on the pathway and network levels and perturbation datasets from the Library of Integrated Network-Based Cellular Signatures to introduce a systematic computational process to discover new drugs implicated in AD. First, we collected 561 genes that have reported to be risk genes of AD, and applied functional enrichment analysis on these genes. Then, by quantifying proximity between 5595 molecule drugs and AD based on human interactome, we filtered out 1092 drugs that were proximal to the disease. We further performed an Inverted Gene Set Enrichment analysis on these drug candidates, which allowed us to estimate effect of perturbations on gene expression and identify 24 potential drug candidates for AD treatment. Results from this study also provided insights for understanding the molecular mechanisms underlying AD. As a useful systematic method, our approach can also be used to identify efficacious therapies for other complex diseases.

Availability and implementation: The source code is available at https://github.com/zer0o0/drug-repo.git.

Supplementary information: Supplementary data are available at Bioinformatics online.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances