In Vitro Effect of Hyperthermic Ag and Au Fe3O4 Nanoparticles in Cancer Cells

J BUON. Mar-Apr 2020;25(2):1212-1218.


Purpose: To investigate the anti-cancer efficacy of hyperthermic Ag and Au Fe3O4 core nanoparticles via cytotoxicity study (MTT assay) and the underlying molecular mechanism of action (changes in gene expression via quantitive real time PCR (qRT-PCR).

Methods: HEK293, HCT116, 4T1 and HUH7 human cell lines and 4T1 musculus mammary gland cell line were incubated with Fe3O4 core Ag(Au) shell nanoparticles (NPs) prior to a hyperthermia session. MTT assay was performed to estimate the cytotoxic effects of these NPs. RNA extraction and cDNA synthesis followed so as to quantify mRNA fold change of hsp-70, p53, bcl-2 and casp-3 via qRT-PCR.

Results: Fe3O4 core Au shell (concentrations of 400 and 600μg/mL) produced the greatest reduction of viability on HCT116 and 4T1 cells while Fe3O4 core Ag shell (200, 400 and 600μg/mL) reduce viability on HUH7 cells. Hsp-70, p53 and casp-3 were up-regulated while bcl-2 was downregulated in most cases.

Conclusions: Fe3O4 core Ag (Au) shell induced apoptosis on cancer cells (HCT116 and HUH7) via the p53/bcl-2/casp-3 pathway. 4T1 cells also underwent apoptosis via a p53-independent pathway.