The role of NO in plant response to salt stress: interactions with polyamines

Funct Plant Biol. 2020 Sep;47(10):865-879. doi: 10.1071/FP19047.

Abstract

Soil salinity is a major abiotic stress that limits plant growth and productivity. High concentrations of sodium chloride can cause osmotic and ionic effects. This stress minimises a plant's ability to uptake water and minerals, and increases Na+ accumulation in the cytosol, thereby disturbing metabolic processes. Prolonged plant exposure to salt stress can lead to oxidative stress and increased production of reactive oxygen species (ROS). Higher plants developed some strategies to cope with salt stress. Among these, mechanisms involving nitric oxide (NO) and polyamines (PAs) are particularly important. NO is a key signalling molecule that mediates a variety of physiological functions and defence responses against abiotic stresses in plants. Under salinity conditions, NO donors increase growth parameters, reduce Na+ toxicity, maintain ionic homeostasis, stimulate osmolyte accumulation and prevent damages caused by ROS. NO enhances salt tolerance of plants via post-translational protein modifications through S-nitrosylation of thiol groups, nitration of tyrosine residues and modulation of multiple gene expression. Several reviews have reported on the role of polyamines in modulating salt stress plant response and the capacity to enhance PA synthesis upon salt stress exposure, and it is known that NO and PAs interact under salinity. In this review, we focus on the role of NO in plant response to salt stress, paying particular attention to the interaction between NO and PAs.

Publication types

  • Review

MeSH terms

  • Nitric Oxide*
  • Plants
  • Polyamines*
  • Salt Tolerance
  • Stress, Physiological

Substances

  • Polyamines
  • Nitric Oxide