A quantitative and qualitative analysis of the COVID-19 pandemic model

Chaos Solitons Fractals. 2020 Sep:138:109932. doi: 10.1016/j.chaos.2020.109932. Epub 2020 May 25.

Abstract

Global efforts around the world are focused on to discuss several health care strategies for minimizing the impact of the new coronavirus (COVID-19) on the community. As it is clear that this virus becomes a public health threat and spreading easily among individuals. Mathematical models with computational simulations are effective tools that help global efforts to estimate key transmission parameters and further improvements for controlling this disease. This is an infectious disease and can be modeled as a system of non-linear differential equations with reaction rates. This work reviews and develops some suggested models for the COVID-19 that can address important questions about global health care and suggest important notes. Then, we suggest an updated model that includes a system of differential equations with transmission parameters. Some key computational simulations and sensitivity analysis are investigated. Also, the local sensitivities for each model state concerning the model parameters are computed using three different techniques: non-normalizations, half normalizations, and full normalizations. Results based on the computational simulations show that the model dynamics are significantly changed for different key model parameters. Interestingly, we identify that transition rates between asymptomatic infected with both reported and unreported symptomatic infected individuals are very sensitive parameters concerning model variables in spreading this disease. This helps international efforts to reduce the number of infected individuals from the disease and to prevent the propagation of new coronavirus more widely on the community. Another novelty of this paper is the identification of the critical model parameters, which makes it easy to be used by biologists with less knowledge of mathematical modeling and also facilitates the improvement of the model for future development theoretically and practically.

Keywords: Computational simulations; Coronavirus disease (COVID-19); Mathematical modeling; Model reduction; Sensitivity analysis.