NAguideR: performing and prioritizing missing value imputations for consistent bottom-up proteomic analyses
- PMID: 32526036
- PMCID: PMC7641313
- DOI: 10.1093/nar/gkaa498
NAguideR: performing and prioritizing missing value imputations for consistent bottom-up proteomic analyses
Abstract
Mass spectrometry (MS)-based quantitative proteomics experiments frequently generate data with missing values, which may profoundly affect downstream analyses. A wide variety of imputation methods have been established to deal with the missing-value issue. To date, however, there is a scarcity of efficient, systematic, and easy-to-handle tools that are tailored for proteomics community. Herein, we developed a user-friendly and powerful stand-alone software, NAguideR, to enable implementation and evaluation of different missing value methods offered by 23 widely used missing-value imputation algorithms. NAguideR further evaluates data imputation results through classic computational criteria and, unprecedentedly, proteomic empirical criteria, such as quantitative consistency between different charge-states of the same peptide, different peptides belonging to the same proteins, and individual proteins participating protein complexes and functional interactions. We applied NAguideR into three label-free proteomic datasets featuring peptide-level, protein-level, and phosphoproteomic variables respectively, all generated by data independent acquisition mass spectrometry (DIA-MS) with substantial biological replicates. The results indicate that NAguideR is able to discriminate the optimal imputation methods that are facilitating DIA-MS experiments over those sub-optimal and low-performance algorithms. NAguideR further provides downloadable tables and figures supporting flexible data analysis and interpretation. NAguideR is freely available at http://www.omicsolution.org/wukong/NAguideR/ and the source code: https://github.com/wangshisheng/NAguideR/.
© The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research.
Figures
Similar articles
-
StatsPro: Systematic integration and evaluation of statistical approaches for detecting differential expression in label-free quantitative proteomics.J Proteomics. 2022 Jan 6;250:104386. doi: 10.1016/j.jprot.2021.104386. Epub 2021 Sep 30. J Proteomics. 2022. PMID: 34600153
-
A Simple Optimization Workflow to Enable Precise and Accurate Imputation of Missing Values in Proteomic Data Sets.J Proteome Res. 2021 Jun 4;20(6):3214-3229. doi: 10.1021/acs.jproteome.1c00070. Epub 2021 May 3. J Proteome Res. 2021. PMID: 33939434
-
Data Imputation in Merged Isobaric Labeling-Based Relative Quantification Datasets.Methods Mol Biol. 2020;2051:297-308. doi: 10.1007/978-1-4939-9744-2_13. Methods Mol Biol. 2020. PMID: 31552635
-
Review, evaluation, and discussion of the challenges of missing value imputation for mass spectrometry-based label-free global proteomics.J Proteome Res. 2015 May 1;14(5):1993-2001. doi: 10.1021/pr501138h. Epub 2015 Apr 22. J Proteome Res. 2015. PMID: 25855118 Free PMC article. Review.
-
A practical guide to interpreting and generating bottom-up proteomics data visualizations.Proteomics. 2022 Apr;22(8):e2100103. doi: 10.1002/pmic.202100103. Epub 2022 Feb 15. Proteomics. 2022. PMID: 35107884 Review.
Cited by
-
Application of SWATH Mass Spectrometry and Machine Learning in the Diagnosis of Inflammatory Bowel Disease Based on the Stool Proteome.Biomedicines. 2024 Feb 1;12(2):333. doi: 10.3390/biomedicines12020333. Biomedicines. 2024. PMID: 38397935 Free PMC article.
-
Nutrient availability regulates the secretion and function of immune cell-derived extracellular vesicles through metabolic rewiring.Sci Adv. 2024 Feb 16;10(7):eadj1290. doi: 10.1126/sciadv.adj1290. Epub 2024 Feb 14. Sci Adv. 2024. PMID: 38354238 Free PMC article.
-
Proteomics-driven noninvasive screening of circulating serum protein panels for the early diagnosis of hepatocellular carcinoma.Nat Commun. 2023 Dec 18;14(1):8392. doi: 10.1038/s41467-023-44255-2. Nat Commun. 2023. PMID: 38110372 Free PMC article.
-
Integrated omics landscape of hepatocellular carcinoma suggests proteomic subtypes for precision therapy.Cell Rep Med. 2023 Dec 19;4(12):101315. doi: 10.1016/j.xcrm.2023.101315. Epub 2023 Dec 12. Cell Rep Med. 2023. PMID: 38091986 Free PMC article.
-
A basic phosphoproteomic-DIA workflow integrating precise quantification of phosphosites in systems biology.Biophys Rep. 2023 Apr 30;9(2):82-98. doi: 10.52601/bpr.2023.230007. Biophys Rep. 2023. PMID: 37753060 Free PMC article.
References
-
- Gao Q., Zhu H., Dong L., Shi W., Chen R., Song Z., Huang C., Li J., Dong X., Zhou Y. et al. .. Integrated proteogenomic characterization of HBV-related hepatocellular carcinoma. Cell. 2019; 179:561–577. - PubMed
-
- Jiang Y., Sun A., Zhao Y., Ying W., Sun H., Yang X., Xing B., Sun W., Ren L., Hu B. et al. .. Proteomics identifies new therapeutic targets of early-stage hepatocellular carcinoma. Nature. 2019; 567:257–261. - PubMed
-
- Moorthy K., Saberi Mohamad M., Deris S.. A review on missing value imputation algorithms for microarray gene expression data. Curr. Bioinformatics. 2014; 9:18–22.
-
- Jornsten R., Wang H.Y., Welsh W.J., Ouyang M.. DNA microarray data imputation and significance analysis of differential expression. Bioinformatics. 2005; 21:4155–4161. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
