The overexpression of three cytochrome P450 genes CYP6CY14, CYP6CY22 and CYP6UN1 contributed to metabolic resistance to dinotefuran in melon/cotton aphid, Aphis gossypii Glover

Pestic Biochem Physiol. 2020 Jul:167:104601. doi: 10.1016/j.pestbp.2020.104601. Epub 2020 May 11.

Abstract

Dinotefuran, the third-generation neonicotinoid, has been applied against melon/cotton aphid Aphis gossypii Glover in China. The risk of resistance development, cross-resistance pattern and potential resistance mechanism of dinotefuran in A. gossypii were investigated. A dinotefuran-resistant strain of A. gossypii (DinR) with 74.7-fold resistance was established by continuous selection using dinotefuran. The DinR strain showed a medium level of cross resistance to thiamethoxam (15.2-fold), but no cross resistance to imidacloprid. The synergism assay indicated that piperonyl butoxide and triphenyl phosphate showed synergistic effects on dinotefuran toxicity to the DinR strain with a synergistic ratio of 8.3 and 2.5, respectively, while diethyl maleate showed no synergistic effect. The activities of cytochrome P450 monooxygenase and carboxylesterase were significantly higher in DinR strain than in susceptible strain (SS). Moreover, the gene expression results showed that CYP6CY14, CYP6CY22 and CYP6UN1 were significantly overexpressed in DinR strain compared with SS strain. The expression of CYP6CY14 was 5.8-fold higher in DinR strain than in SS strain. Additionally, the transcription of CYP6CY14, CYP6CY22 and CYP6UN1 in A. gossypii showed dose- and time-dependent responses to dinotefuran exposure. Furthermore, knockdown of CYP6CY14, CYP6CY22 and CYP6UN1 via RNA interference (RNAi) significantly increased mortality of A. gossypii, when A. gossypii was treated with dinotefuran. These results demonstrated the overexpression of CYP6CY14, CYP6CY22 and CYP6UN1 contributed to dinotefuran resistance in A. gossypii.

Keywords: Cross-resistance; Cytochrome P450; Dinotefuran; Melon/cotton aphid Aphis gossypii; Resistance mechanism.

MeSH terms

  • Animals
  • Aphids*
  • China
  • Cucurbitaceae*
  • Cytochrome P-450 Enzyme System
  • Guanidines
  • Insecticide Resistance
  • Insecticides*
  • Neonicotinoids
  • Nitro Compounds

Substances

  • Guanidines
  • Insecticides
  • Neonicotinoids
  • Nitro Compounds
  • dinotefuran
  • Cytochrome P-450 Enzyme System