Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jun;582(7811):209-213.
doi: 10.1038/s41586-020-2359-9. Epub 2020 Jun 11.

Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers

Affiliations

Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers

Guangwei Hu et al. Nature. 2020 Jun.

Abstract

Twisted two-dimensional bilayer materials exhibit many exotic electronic phenomena. Manipulating the 'twist angle' between the two layers enables fine control of the electronic band structure, resulting in magic-angle flat-band superconductivity1,2, the formation of moiré excitons3-8 and interlayer magnetism9. However, there are limited demonstrations of such concepts for photons. Here we show how analogous principles, combined with extreme anisotropy, enable control and manipulation of the photonic dispersion of phonon polaritons in van der Waals bilayers. We experimentally observe tunable topological transitions from open (hyperbolic) to closed (elliptical) dispersion contours in bilayers of α-phase molybdenum trioxide (α-MoO3), arising when the rotation between the layers is at a photonic magic twist angle. These transitions are induced by polariton hybridization and are controlled by a topological quantity. At the transitions the bilayer dispersion flattens, exhibiting low-loss tunable polariton canalization and diffractionless propagation with a resolution of less than λ0/40, where λ0 is the free-space wavelength. Our findings extend twistronics10 and moiré physics to nanophotonics and polaritonics, with potential applications in nanoimaging, nanoscale light propagation, energy transfer and quantum physics.

PubMed Disclaimer

Similar articles

Cited by

  • Twisted moiré conductive thermal metasurface.
    Li H, Wang D, Xu G, Liu K, Zhang T, Li J, Tao G, Yang S, Lu Y, Hu R, Lin S, Li Y, Qiu CW. Li H, et al. Nat Commun. 2024 Mar 9;15(1):2169. doi: 10.1038/s41467-024-46247-2. Nat Commun. 2024. PMID: 38461277 Free PMC article.
  • Exploring van der Waals materials with high anisotropy: geometrical and optical approaches.
    Slavich AS, Ermolaev GA, Tatmyshevskiy MK, Toksumakov AN, Matveeva OG, Grudinin DV, Voronin KV, Mazitov A, Kravtsov KV, Syuy AV, Tsymbarenko DM, Mironov MS, Novikov SM, Kruglov I, Ghazaryan DA, Vyshnevyy AA, Arsenin AV, Volkov VS, Novoselov KS. Slavich AS, et al. Light Sci Appl. 2024 Mar 8;13(1):68. doi: 10.1038/s41377-024-01407-3. Light Sci Appl. 2024. PMID: 38453886 Free PMC article.
  • Wandering principal optical axes in van der Waals triclinic materials.
    Ermolaev GA, Voronin KV, Toksumakov AN, Grudinin DV, Fradkin IM, Mazitov A, Slavich AS, Tatmyshevskiy MK, Yakubovsky DI, Solovey VR, Kirtaev RV, Novikov SM, Zhukova ES, Kruglov I, Vyshnevyy AA, Baranov DG, Ghazaryan DA, Arsenin AV, Martin-Moreno L, Volkov VS, Novoselov KS. Ermolaev GA, et al. Nat Commun. 2024 Mar 6;15(1):1552. doi: 10.1038/s41467-024-45266-3. Nat Commun. 2024. PMID: 38448442 Free PMC article.
  • Van der Waals quaternary oxides for tunable low-loss anisotropic polaritonics.
    Sun T, Chen R, Ma W, Wang H, Yan Q, Luo J, Zhao S, Zhang X, Li P. Sun T, et al. Nat Nanotechnol. 2024 Mar 1. doi: 10.1038/s41565-024-01628-y. Online ahead of print. Nat Nanotechnol. 2024. PMID: 38429492
  • Planar hyperbolic polaritons in 2D van der Waals materials.
    Wang H, Kumar A, Dai S, Lin X, Jacob Z, Oh SH, Menon V, Narimanov E, Kim YD, Wang JP, Avouris P, Martin Moreno L, Caldwell J, Low T. Wang H, et al. Nat Commun. 2024 Jan 2;15(1):69. doi: 10.1038/s41467-023-43992-8. Nat Commun. 2024. PMID: 38167681 Free PMC article. Review.

References

    1. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018). - DOI - PubMed
    1. Cao, Y. et al. Strange metal in magic-angle graphene with near Planckian dissipation. Phys. Rev. Lett. 124, 076801 (2020). - DOI - PubMed
    1. Wu, F., Lovorn, T. & MacDonald, A. H. Topological exciton bands in moiré heterojunctions. Phys. Rev. Lett. 118, 147401 (2017). - DOI - PubMed
    1. Yu, H., Liu, G.-B., Tang, J., Xu, X. & Yao, W. Moiré excitons: from programmable quantum emitter arrays to spin–orbit-coupled artificial lattices. Sci. Adv. 3, e1701696 (2017). - DOI - PubMed - PMC
    1. Seyler, K. L. et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 567, 66–70 (2019). - DOI - PubMed

Publication types

LinkOut - more resources