Preparation and Characterization of pH Sensitive Chitosan/3-Glycidyloxypropyl Trimethoxysilane (GPTMS) Hydrogels by Sol-Gel Method

Polymers (Basel). 2020 Jun 10;12(6):1326. doi: 10.3390/polym12061326.

Abstract

pH responsive chitosan and 3-Glycidyloxypropyl trimethoxysilane (GPTMS) hydrogels were synthesized by the sol-gel crosslinking reaction. GPTMS was introduced to influence several behaviors of the chitosan hydrogels, such as the swelling ratio, mechanical properties, swelling thermodynamics, kinetics, and expansion mechanism. The functional groups of Chitosan/GPTMS hybrid hydrogels were verified by FT-IR spectrometer. Differential scanning calorimetry (DSC) and the thermogravimetric analysis (TGA) were used to analyzed the thermal behavior of water molecules, the expansion of thermodynamics, and the content of water molecules in the hydrogel. The results show that hydrogel consists of 50 wt.% GPTMS (CG50) and has good mechanical properties and sensitivity to pH response characteristics in the acidic/alkaline buffer solution. The increase of GPTMS content leads to the increase of hydrophobic groups in the hydrogel and causes the decrease of the overall water content and the freezing bond water content. When the hydrogels were immersed in acid solution, the interaction force parameter was smaller than that of DI-water and alkaline. It means that the interaction forces between hydrogel and water molecules are relatively strong. The swelling kinetics of hybrid hydrogels were investigated to inspect the swelling mechanism. The result is consistent with the Fisk's diffusion mechanism, meaning that the rate of water penetration is adjustable. The biodegradable hydrogel (CG50) in this study has good environmental sensitivity and mechanical properties. It is suitable to be applied in the fields of drug release or biomedical technology.

Keywords: chitosan; differential scanning calorimetry (DSC); hydrogels; interaction force parameter; swelling thermodynamics and kinetics.