Expression of circular RNAs in the vascular dementia rats

Neurosci Lett. 2020 Sep 14:735:135087. doi: 10.1016/j.neulet.2020.135087. Epub 2020 Jun 10.

Abstract

Purpose: Circular RNAs (circRNAs) are a class of endogenous noncoding RNA molecules that lack free 5' and a 3' end poly(A) tail. CircRNAs are enriched in neural tissues, and have been found to be associated with various diseases of the central nervous system. This study aimed to examine key circRNAs involved in vascular dementia(VD) model rats.

Methods: Total RNA-seq profiles of hippocampus samples from normal and vascular dementia rats were extracted and high throughput sequencing was performed. Quantitative real-time polymerase chain reaction (qPCR) was used to confirm the circRNA expression profiles. Differential expression of circRNA has been used for analysis via the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The circRNA-miRNA-mRNA network was then constructed.

Results: The data of high-throughput sequencing showed that there were 425 circRNAs differentially expressed between VD and normal rats (fold change (FC)≥2.0 and p-value< 0.05). In the VD group, a total of 237 were significantly upwardly revised, while the other 188 were downwardly revised. Eleven of these expressed more than 10 times in the VD model rats. The Expression levels of 10 circRNAs (circ_Map2k5, circ_Ulk2, circ_Plekha5, circ_Plcl1, circ_Sntg1, circ_Morc3, circ_Rims1, circ_ Stxbp5l, circ_ Agtpbp1, circ_Lrrc28) were verified by qPCR, which were persistent with RNA-seq data(P < 0.05). GO analysis indicated that majority of predicted target genes were involved in biological processes, such as cellular processes, nervous system development, etc. Cellular component, such as cellular parts, intracellular parts, cytoplasm and molecular function, such as binding, catalytic activity, etc. Moreover, KEGG analysis showed that many genes were enriched in cholinergic synapses, the MAPK signaling pathways, GABAergic synapses, metabolic pathways, the mTOR signaling pathways, and so on.

Conclusions: Our results suggest the involvement of different ncRNA expression patterns in the pathogenesis (are associated with the pathogenesis of VD. Our findings provide a novel perspective for further research into potential mechanisms of VD and might facilitate the development of novel therapeutics targeting ncRNAs.

Keywords: Circular RNAs; Vascular dementia; circRNA-microRNA interaction.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Dementia, Vascular / genetics*
  • Dementia, Vascular / metabolism
  • Gene Expression Profiling
  • Hippocampus / metabolism
  • Male
  • RNA, Circular / biosynthesis*
  • Rats
  • Rats, Sprague-Dawley
  • Transcriptome

Substances

  • RNA, Circular