Recent Cannabis Use in HIV Is Associated With Reduced Inflammatory Markers in CSF and Blood

Neurol Neuroimmunol Neuroinflamm. 2020 Jun 17;7(5):e809. doi: 10.1212/NXI.0000000000000809. Print 2020 Sep.

Abstract

Objective: To determine whether cannabis may reduce HIV-related persistent inflammation, we evaluated the relationship of cannabis use in people with HIV (PWH) to inflammatory cytokines in CSF and blood plasma.

Methods: We measured a panel of proinflammatory cytokines (interleukin [IL]-16, C-reactive protein [CRP], IL-6, interferon gamma-induced protein [IP]-10, soluble CD14, and soluble tumor necrosis factor receptor type II [sTNFRII]) in CSF and blood plasma in PWH and HIV- individuals who did or did not use cannabis at various levels of exposure. Participants in this observational cohort were recruited from community sources and underwent lumbar puncture and phlebotomy. Cannabis use parameters were characterized by self-report based on a semistructured timeline follow-back interview. Cytokines were measured using commercially available immunoassays. Data were analyzed using factor analysis.

Results: Participants were 35 PWH and 21 HIV- individuals, mean (SD) age 45.4 (14.5) years, 41 cannabis ever users, and 15 never users. PWH and HIV- were not different in recency, cumulative months, grams, or density of cannabis use. A factor analysis using CSF biomarkers yielded a factor loading on CRP, IL-16, and sTNFRII that was significantly associated with recency of cannabis use (more recent use associated with lower factor 1 values, reflecting less inflammation; r = 0.331 [95% CI 0.0175, 0.586]). In particular, more recent cannabis use was related to lower IL-16 levels (r = 0.549 [0.282, 0.737]). Plasma biomarkers yielded a factor loading on sTNFRII and IP-10 that was associated with more recent cannabis use (more recent use related to less inflammation; r = 0.374 [0.0660, 0.617]).

Conclusions: Recent cannabis use was associated with lower levels of inflammatory biomarkers, both in CSF and blood, but in different patterns. These results are consistent with compartmentalization of immune effects of cannabis. The principal active components of cannabis are highly lipid soluble and sequestered in brain tissue; thus, our findings are consistent with specific anti-neuroinflammatory effects that may benefit HIV neurologic dysfunction.