Fraction-variant beam orientation optimization for intensity-modulated proton therapy

Med Phys. 2020 Sep;47(9):3826-3834. doi: 10.1002/mp.14340. Epub 2020 Aug 2.

Abstract

Purpose: To achieve a superior balance between dosimetry and the delivery efficiency of intensity-modulated proton therapy (IMPT) using as few beams as possible in a single fraction, we optimally vary beams in different fractions.

Methods: In the optimization, 400~800 feasible noncoplanar beams were included in the candidate pool. For each beam, the doses of all scanning spots covering the target volume and a margin were calculated. The fraction-variant beam orientation optimization (FVBOO) problem was formulated to include three terms: two quadratic dose fidelity terms to penalize the deviation of planning target volume fractional dose and organs at risk (OAR) cumulative doses from prescription, respectively; an L2,1/2-norm group sparsity term to control the number of active beams per fraction to between 1 and 4. The Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) was applied to solve this problem. FVBOO was tested on a patient with base-of-skull (BOS) tumor of 5 fractions (5f) and 30 fractions (30f) with an average number of active beams per fraction varying between 4 and 1. In addition, one bilateral head-and-neck (H&N) patient, and one esophageal cancer (ESG) patient of 30f were tested with about three active beams per fraction. The results were compared with IMPT plans that use fixed beams in each fraction. The fixed beams were selected using the group sparsity term with a fraction-invariant BOO (FIBOO) constraint.

Results: Varying beams were chosen in either the 5f or 30f FVBOO plans. While similar number of beams per fraction was selected as the FIBOO plan, the FVBOO plans were able to spare the OARs better, with an average reduction of [Dmean, Dmax] from the FIBOO plans by [0.85, 2.08] Relative Biological Effective Gy (GyRBE) in the 5f plan and [1.87, 4.06] GyRBE in the 30f plans. While reducing the number of beams per fraction in the BOS patient, a three-beam/fraction 5f FVBOO plan performs comparably as the four-beam FIBOO plan and a two-beam/fraction 30f FVBOO plan still provides superior dosimetry.

Conclusion: Fraction-variant beam orientation optimization allows the utilization of a larger beam solution space for superior dose distribution in IMPT while maintaining a practical number of beams in each fraction.

Keywords: fraction variant; intensity modulated proton therapy; optimization.

MeSH terms

  • Algorithms
  • Humans
  • Organs at Risk
  • Proton Therapy*
  • Radiotherapy Dosage
  • Radiotherapy Planning, Computer-Assisted
  • Radiotherapy, Intensity-Modulated*