7T MPFLAIR versus MP2RAGE for Quantifying Lesion Volume in Multiple Sclerosis

J Neuroimaging. 2020 Jul;30(4):531-536. doi: 10.1111/jon.12718. Epub 2020 Jun 22.

Abstract

Background and purpose: Use of fluid-attenuated inversion recovery (FLAIR) scans to quantify multiple sclerosis (MS) lesion volume on 7 Tesla (7T) magnetic resonance imaging (MRI) has many downsides, including poor image homogeneity. There are little data about the relative benefit of alternative modalities. The purpose of this paper is to investigate if magnetization-prepared 2 rapid acquisition gradient echo (MP2RAGE) is a viable alternative to FLAIR for robust lesion volume measurement and disability correlations.

Methods: Forty-seven participants with MS underwent annual brain 7T MRIs. Magnetization-prepared FLAIR (MPFLAIR) and MP2RAGE (both at .7 mm3 isotropic resolution) sequences from a total of 80 MRI scans from 47 subjects were reviewed. White matter lesion (WML) masks were manually constructed from MPFLAIR and T1 maps (from MP2RAGE). Lesion volumes (normalized to intracranial volume) were compared to clinical characteristics and disability scales scores by Pearson or Spearman correlation, as appropriate. Relative correlation strength was compared by Fisher r- to z-transformation.

Results: Normalized lesion volume was greater in MPFLAIR masks (median .005 [range, .001-.030]) than from T1 maps (median .003 [range, .000-.015]). However, lesion volumes between MPFLAIR and T1 maps were highly correlated (rho = .87, P < .001). WML masks from both modalities correlated with most disability measures with no significant difference in the strength of correlation.

Conclusions: 7T MPFLAIR and MP2RAGE T1 map-based WML volumes are highly intercorrelated and both correlate with disability. Thus, MP2RAGE may be a viable alternative to FLAIR-based methods for WML measurement on 7T MRI in MS research.

Keywords: FLAIR; MP2RAGE; MRI; Multiple sclerosis.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Brain / diagnostic imaging*
  • Brain / pathology
  • Female
  • Humans
  • Magnetic Resonance Imaging / methods*
  • Male
  • Middle Aged
  • Multiple Sclerosis / diagnostic imaging*
  • Multiple Sclerosis / pathology
  • White Matter / diagnostic imaging*
  • White Matter / pathology