Zinc oxide nanoparticles (ZnONPs) as a novel nanofertilizer: Influence on seed yield and antioxidant defense system in soil grown soybean (Glycine max cv. Kowsar)

Sci Total Environ. 2020 Oct 10:738:140240. doi: 10.1016/j.scitotenv.2020.140240. Epub 2020 Jun 17.

Abstract

Dearth of knowledge about the prospect of using Zinc (Zn) based nanoparticles (NPs) to enrich Zn-deficient soils with Zn warrants investigations into potential soil applications of ZnONPs for improving crop yield and plant health. Herein, we investigated the potential influence of ZnONPs on seed yield, focusing on particle size-, morphology-, and concentration-dependent responses of multiple antioxidant defense biomarkers, in soil-grown soybean (Glycine max cv. Kowsar) during its lifecycle of 120 d. We achieved this goal following a rational design strategy that enabled us to synthesize three types of morphologically different ZnONPs (spherical/ 38 nm, floral-like/ 59 nm, and rod-like/ >500 nm); all with high purity, triclinic crystal structure, and negative surface charge; and compared the toxicity with Zn2+ ions. Each pot received two seeds, placed in soil inoculated with N-fixing bacterium (Rhizobium japonicum) and grown in outdoor mesocosm for 120 d. Our findings demonstrated a significant particle size-, morphology-, and concentration-dependent influence of ZnONPs on seed yield, lipid peroxidation, and various antioxidant biomarkers in soybean. Our spherical 38 nm ZnONPs were the most protective compared to the floral-like 59 nm ZnONPs, rod-like >500 nm ZnONPs, and Zn2+ ions, particularly up to 160 mg Zn/kg. However, at the highest concentration of 400 mg Zn/kg, spherical 38 nm ZnONPs elicited the highest oxidative stress responses (H2O2 synthesis, MDA, SOD, CAT, POX) in soybean compared to the other two morphologically different ZnONPs tested. The concentration-response curves for the three types of ZnONPs and Zn2+ ions were nonlinear (nonmonotonous) for all the endpoints evaluated. The weight of evidence also suggested a differential nano-specific toxicity of ZnONPs compared to ionic Zn2+ toxicity in soybean. Our higher no-observed-adverse-effect-level (NOAEL) of 160 mg Zn/kg indicates the potential for using ZnONPs as a novel nanofertilizer for crops grown in Zn-deficient soils to improve crop yield, food quality and address malnutrition, globally.

Keywords: Antioxidant enzymes; Nanoparticles; Oxidative stress; Reactive oxygen species; Zinc ions.

MeSH terms

  • Antioxidants
  • Glycine max
  • Hydrogen Peroxide
  • Nanoparticles*
  • Seeds
  • Soil
  • Zinc Oxide*

Substances

  • Antioxidants
  • Soil
  • Hydrogen Peroxide
  • Zinc Oxide