Disintegration of diminutive liquid helium jets in vacuum

J Chem Phys. 2020 Jun 21;152(23):234306. doi: 10.1063/5.0004503.

Abstract

The phenomenon of liquid jets disintegrating into droplets has attracted the attention of researchers for more than 200 years. An overwhelming fraction of these studies considered classical viscous liquid jets issuing into ambient atmospheric gases, such as air. Here, we present an optical shadowgraphy study of the disintegration of a cryogenic liquid helium jet produced with a 5 µm diameter nozzle into vacuum. The physical properties of liquid helium, such as its density, surface tension, and viscosity, change dramatically as the jet flows through the nozzle and evaporatively cools in vacuum, eventually reaching the superfluid state. In this study, we demonstrate that, at different stagnation pressures and temperatures, droplet formation may involve spraying, capillary breakup, jet branching, and/or flashing and cavitation. The average droplet sizes produced in this work range from 3.4 × 1012 to 6.5 × 1012 helium atoms or 6.7-8.3 µm in diameter. This paper also reports on the distributions of sizes and shapes of the resulting droplets.