A chalcone derivative, 1m-6, exhibits atheroprotective effects by increasing cholesterol efflux and reducing inflammation-induced endothelial dysfunction

Br J Pharmacol. 2020 Dec;177(23):5375-5392. doi: 10.1111/bph.15175. Epub 2020 Jul 20.

Abstract

Background and purpose: Atherosclerosis, resulting from lipid dysregulation and vascular inflammation, causes atherosclerotic cardiovascular disease (ASCVD), which contributes to morbidity and mortality worldwide. Chalcone and its derivatives possess beneficial properties, including anti-inflammatory, antioxidant and antitumour activity with unknown cardioprotective effects. We aimed to develop an effective chalcone derivative with antiatherogenic potential.

Experimental approach: Human THP-1 cells and HUVECs were used as in vitro models. Western blots and real-time PCRs were performed to quantify protein, mRNA and miRNA expressions. The cholesterol efflux capacity was assayed by 3 H labelling of cholesterol. LDL receptor knockout (Ldlr-/- ) mice fed a high-fat diet were used as an in vivo atherogenesis model. Haematoxylin and eosin and oil red O staining were used to analyse plaque formation.

Key results: Using ATP-binding cassette transporter A1 (ABCA1) expression we identified the chalcone derivative, 1m-6, which enhances ABCA1 expression and promotes cholesterol efflux in THP-1 macrophages. Moreover, 1m-6 stabilizes ABCA1 mRNA and suppresses the expression of potential ABCA1-regulating miRNAs through nuclear factor erythroid 2-related factor 2 (Nrf2)/haem oxygenase-1 (HO-1) signalling. Additionally, 1m-6 significantly inhibits TNF-α-induced expression of adhesion molecules, vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1), plus production of proinflammatory cytokines via inhibition of JAK/STAT3 activation and the modulation of Nrf2/HO-1 signalling in HUVECs. In atherosclerosis-prone mice, 1m-6 significantly reduces lipid accumulation and atherosclerotic plaque formation.

Conclusion and implications: Our study demonstrates that 1m-6 produces promising atheroprotective effects by enhancing cholesterol efflux and suppressing inflammation-induced endothelial dysfunction, which opens a new avenue for treating ASCVD.

Linked articles: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.23/issuetoc.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • ATP Binding Cassette Transporter 1 / genetics
  • Animals
  • Atherosclerosis* / drug therapy
  • Atherosclerosis* / prevention & control
  • Chalcone* / pharmacology
  • Chalcones* / pharmacology
  • Cholesterol
  • Inflammation / drug therapy
  • Mice
  • Mice, Knockout

Substances

  • ATP Binding Cassette Transporter 1
  • Chalcones
  • Chalcone
  • Cholesterol