Early prediction of high flow nasal cannula therapy outcomes using a modified ROX index incorporating heart rate

J Intensive Care. 2020 Jun 22:8:41. doi: 10.1186/s40560-020-00458-z. eCollection 2020.

Abstract

Background: The ROX index (ratio of pulse oximetry/FIO2 to respiratory rate) has been validated to predict high flow nasal cannula therapy (HFNC) outcomes in patients with pneumonia. We evaluated a modified ROX index incorporating heart rate (HR) in patients initiated on HFNC for acute hypoxemic respiratory failure and as a preventative treatment following planned extubation.

Methods: We performed a prospective observational cohort study of 145 patients treated with HFNC. ROX-HR index was defined as the ratio of ROX index over HR (beats/min), multiplied by a factor of 100. Evaluation was performed using area under the receiving operating characteristic curve (AUROC) and cutoffs assessed for prediction of HFNC failure: defined as the need for mechanical ventilation.

Results: Ninety-nine (68.3%) and 46 (31.7%) patients were initiated on HFNC for acute hypoxemic respiratory failure and following a planned extubation, respectively. The majority (86.9%) of patients had pneumonia as a primary diagnosis, and 85 (56.6%) patients were immunocompromised. Sixty-one (42.1%) patients required intubation (HFNC failure). Amongst patients on HFNC for acute respiratory failure, HFNC failure was associated with a lower ROX and ROX-HR index recorded at time points between 1 and 48 h. Within the first 12 h, both indices performed with the highest AUROC at 10 h as follows: 0.723 (95% CI 0.605-0.840) and 0.739 (95% CI 0.626-0.853) for the ROX and ROX-HR index respectively. A ROX-HR index of > 6.80 was significantly associated with a lower risk of HFNC failure (hazard ratio 0.301 (95% CI 0.143-0.663)) at 10 h. This association was also observed at 2, 6, 18, and 24h, even with correction for potential confounding factors. For HFNC initiated post-extubation, only the ROX-HR index remained significantly associated with HFNC failure at all recorded time points between 1 and 24 h. A ROX-HR > 8.00 at 10 h was significantly associated with a lower risk of HFNC failure (hazard ratio 0.176 (95% CI 0.051-0.604)).

Conclusion: While validation studies are required, the ROX-HR index appears to be a promising tool for early identification of treatment failure in patients initiated on HFNC for acute hypoxemic respiratory failure or as a preventative treatment after a planned extubation.

Keywords: Acute respiratory failure; High flow nasal cannula; High flow oxygen therapy; Pneumonia; Postextubation.