Lineage and Parent-of-Origin Effects in DNA Methylation of Honey Bees (Apis mellifera) Revealed by Reciprocal Crosses and Whole-Genome Bisulfite Sequencing

Genome Biol Evol. 2020 Aug 1;12(8):1482-1492. doi: 10.1093/gbe/evaa133.

Abstract

Parent-of-origin methylation arises when the methylation patterns of a particular allele are dependent on the parent it was inherited from. Previous work in honey bees has shown evidence of parent-of-origin-specific expression, yet the mechanisms regulating such pattern remain unknown in honey bees. In mammals and plants, DNA methylation is known to regulate parent-of-origin effects such as genomic imprinting. Here, we utilize genotyping of reciprocal European and Africanized honey bee crosses to study genome-wide allele-specific methylation patterns in sterile and reproductive individuals. Our data confirm the presence of allele-specific methylation in honey bees in lineage-specific contexts but also importantly, though to a lesser degree, parent-of-origin contexts. We show that the majority of allele-specific methylation occurs due to lineage rather than parent-of-origin factors, regardless of the reproductive state. Interestingly, genes affected by allele-specific DNA methylation often exhibit both lineage and parent-of-origin effects, indicating that they are particularly labile in terms of DNA methylation patterns. Additionally, we re-analyzed our previous study on parent-of-origin-specific expression in honey bees and found little association with parent-of-origin-specific methylation. These results indicate strong genetic background effects on allelic DNA methylation and suggest that although parent-of-origin effects are manifested in both DNA methylation and gene expression, they are not directly associated with each other.

Keywords: DNA methylation; epigenetics; honey bees; intragenomic conflict; social insects.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Bees / genetics*
  • Crosses, Genetic
  • DNA Methylation*
  • Genome, Insect
  • Whole Genome Sequencing