A further study of the neuromuscular effects of vesamicol (AH5183) and of its enantiomer specificity

Br J Pharmacol. 1988 Apr;93(4):759-68. doi: 10.1111/j.1476-5381.1988.tb11460.x.

Abstract

1. The effects of vesamicol (2-(4-phenylpiperidino) cyclohexanol), an inhibitor of acetylcholine storage, and its two optical isomers have been studied on neuromuscular transmission in rat and frog muscle, and on nerve conduction in frog nerve. 2. Racemic vesamicol produced a pre-block augmentation of twitch tension that also occurred in directly-stimulated muscle. This effect is thus at least partially due to an increase in muscle contractility. 3. (-)-Vesamicol was approximately 20 times more potent than (+)-vesamicol in blocking twitches elicited at 1 Hz. This degree of stereoselectivity is similar to that measured for inhibition of acetylcholine uptake by isolated synaptic vesicles. Both enantiomers were equally weak in reducing nerve action potential amplitude in frog nerve. 4. Further studies with the active isomer, (-)-vesamicol, showed that, like that produced by racemic vesamicol, the neuromuscular block was highly frequency-dependent. The block was not reversed by choline or neostigmine, but was partially reversed by 4- or 3,4-aminopyridine. 5. Preliminary electrophysiological studies showed that vesamicol reduced miniature endplate potential amplitude in rapidly-stimulated frog nerve-muscle preparations. Addition of lanthanum ions increased the frequency of miniature endplate potentials and led to the appearance of apparently normal-sized potentials amongst those of reduced amplitude. 6. The results show the close agreement between pharmacological and biochemical observations indicating the suitability of the rat diaphragm as a test model for substances of this nature. The degree of reversibility of the vesamicol-induced neuromuscular block by aminopyridines was unexpected, and it is suggested that in the presence of a drug which greatly increases release, a pool of acetylcholine is capable of being released which is not normally releasable after block of storage by vesamicol. It is also considered possible that the results from the intracellular recording studies may be explained in these terms.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Anesthetics, Local / pharmacology
  • Animals
  • Electrophysiology
  • In Vitro Techniques
  • Male
  • Motor Endplate / drug effects
  • Muscle Contraction / drug effects
  • Muscles / drug effects
  • Neuromuscular Depolarizing Agents / pharmacology*
  • Neurons / drug effects
  • Phencyclidine / analogs & derivatives*
  • Phencyclidine / pharmacology
  • Phrenic Nerve / physiology
  • Piperidines*
  • Rana pipiens
  • Rats
  • Stereoisomerism

Substances

  • Anesthetics, Local
  • Neuromuscular Depolarizing Agents
  • Piperidines
  • vesamicol
  • Phencyclidine