Comparing Person-Specific and Independent Models on Subject-Dependent and Independent Human Activity Recognition Performance

Sensors (Basel). 2020 Jun 29;20(13):3647. doi: 10.3390/s20133647.

Abstract

The distinction between subject-dependent and subject-independent performance is ubiquitous in the human activity recognition (HAR) literature. We assess whether HAR models really do achieve better subject-dependent performance than subject-independent performance, whether a model trained with data from many users achieves better subject-independent performance than one trained with data from a single person, and whether one trained with data from a single specific target user performs better for that user than one trained with data from many. To those ends, we compare four popular machine learning algorithms' subject-dependent and subject-independent performances across eight datasets using three different personalisation-generalisation approaches, which we term person-independent models (PIMs), person-specific models (PSMs), and ensembles of PSMs (EPSMs). We further consider three different ways to construct such an ensemble: unweighted, κ -weighted, and baseline-feature-weighted. Our analysis shows that PSMs outperform PIMs by 43.5% in terms of their subject-dependent performances, whereas PIMs outperform PSMs by 55.9% and κ -weighted EPSMs-the best-performing EPSM type-by 16.4% in terms of the subject-independent performance.

Keywords: bagging; boosting; ensemble methods; human activity recognition; inertial sensors; machine learning.

MeSH terms

  • Algorithms*
  • Human Activities*
  • Humans
  • Machine Learning*