Exosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells Accelerate Cutaneous Wound Healing by Enhancing Angiogenesis through Delivering Angiopoietin-2

Stem Cell Rev Rep. 2020 Jul 2. doi: 10.1007/s12015-020-09992-7. Online ahead of print.


The underlying mechanisms of human umbilical cord mesenchymal stem cells (hucMSCs) and their exosomes (hucMSC-Exs), which play significant roles in skin wound healing, remain poorly understood. By using a rat model of deep second-degree burn injury, the roles of hucMSC-Exs in angiogenesis and cutaneous wound healing in vivo were investigated. We found that hucMSC-Exs accelerated skin wound healing and angiogenesis, inducing a higher wound-closure rate and increased expression of CD31 in vivo. We also discovered that hucMSC-Exs contained angiopoietin-2 (Ang-2), and treatment with hucMSC-Exs enhanced the expression of the Ang-2 protein in the wound area and human umbilical vein endothelial cells (HUVECs) through exosomal-mediated Ang-2 transfer. Moreover, hucMSC-Exs promoted the proliferative, migratory, and tube-forming ability of HUVECs. Furthermore, overexpression of Ang-2 in hucMSC-Exs further enhanced HUVEC migration and tube formation and exerted therapeutic and proangiogenic effects in cutaneous wounds in rats, whereas knockdown of Ang-2 in hucMSC-Exs abrogated these therapeutic and proangiogenic effects. Taken together, our results indicated that hucMSC-Ex-derived Ang-2 plays a significant role in tube formation of HUVECs and promotion of angiogenesis, and further suggested that hucMSC-Ex-based therapy may serve as a promising therapeutic approach for promoting cutaneous wound healing.

Keywords: Ang-2; Angiogenesis; Cutaneous wound healing; Exosomes; hucMSCs.