High-Nickel NMA: A Cobalt-Free Alternative to NMC and NCA Cathodes for Lithium-Ion Batteries

Adv Mater. 2020 Aug;32(33):e2002718. doi: 10.1002/adma.202002718. Epub 2020 Jul 6.


High-nickel LiNi1- x - y Mnx Coy O2 (NMC) and LiNi1- x - y Cox Aly O2 (NCA) are the cathode materials of choice for next-generation high-energy lithium-ion batteries. Both NMC and NCA contain cobalt, an expensive and scarce metal generally believed to be essential for their electrochemical performance. Herein, a high-Ni LiNi1- x - y Mnx Aly O2 (NMA) cathode of desirable electrochemical properties is demonstrated benchmarked against NMC, NCA, and Al-Mg-codoped NMC (NMCAM) of identical Ni content (89 mol%) synthesized in-house. Despite a slightly lower specific capacity, high-Ni NMA operates at a higher voltage by ≈40 mV and shows no compromise in rate capability relative to NMC and NCA. In pouch cells paired with graphite, high-Ni NMA outperforms both NMC and NCA and only slightly trails NMCAM and a commercial cathode after 1000 deep cycles. Further, the superior thermal stability of NMA to NMC, NCA, and NMCAM is shown using differential scanning calorimetry. Considering the flexibility in compositional tuning and immediate synthesis scalability of high-Ni NMA very similar to NCA and NMC, this study opens a new space for cathode material development for next-generation high-energy, cobalt-free Li-ion batteries.

Keywords: cobalt-free cathode materials; high-nickel NMA; high-nickel layered oxides; lithium-ion batteries; zero cobalt.