Effects of red and blue light on leaf anatomy, CO2 assimilation and the photosynthetic electron transport capacity of sweet pepper (Capsicum annuum L.) seedlings

BMC Plant Biol. 2020 Jul 6;20(1):318. doi: 10.1186/s12870-020-02523-z.

Abstract

Background: The red (R) and blue (B) light wavelengths are known to influence many plant physiological processes during growth and development, particularly photosynthesis. To understand how R and B light influences plant photomorphogenesis and photosynthesis, we investigated changes in leaf anatomy, chlorophyll fluorescence and photosynthetic parameters, and ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco) and Calvin cycle-related enzymes expression and their activities in sweet pepper (Capsicum annuum L.) seedlings exposed to four light qualities: monochromatic white (W, control), R, B and mixed R and B (RB) light with the same photosynthetic photon flux density (PPFD) of 300 μmol/m2·s.

Results: The results revealed that seedlings grown under R light had lower biomass accumulation, CO2 assimilation and photosystem II (PSII) electron transportation compared to plants grown under other treatments. These changes are probably due to inactivation of the photosystem (PS). Biomass accumulation and CO2 assimilation were significantly enriched in B- and RB-grown plants, especially the latter treatment. Their leaves were also thicker, and photosynthetic electron transport capacity, as well as the photosynthetic rate were enhanced. The up-regulation of the expression and activities of Rubisco, fructose-1, 6-bisphosphatase (FBPase) and glyceraldehyde-phosphate dehydrogenase (GAPDH), which involved in the Calvin cycle and are probably the main enzymatic factors contributing to RuBP (ribulose-1, 5-bisphosphate) synthesis, were also increased.

Conclusions: Mixed R and B light altered plant photomorphogenesis and photosynthesis, mainly through its effects on leaf anatomy, photosynthetic electron transportation and the expression and activities of key Calvin cycle enzymes.

Keywords: Anatomy; CO2 assimilation; Light quality; Photosynthesis; Sweet pepper (Capsicum annuum L.).

MeSH terms

  • Biomass
  • Capsicum / anatomy & histology
  • Capsicum / growth & development
  • Capsicum / physiology
  • Capsicum / radiation effects*
  • Carbon Dioxide / metabolism
  • Carbon Dioxide / radiation effects*
  • Electron Transport / radiation effects*
  • Light
  • Photosynthesis / radiation effects*
  • Plant Leaves / anatomy & histology
  • Plant Leaves / growth & development
  • Plant Leaves / physiology
  • Plant Leaves / radiation effects
  • Ribulose-Bisphosphate Carboxylase / metabolism
  • Ribulose-Bisphosphate Carboxylase / radiation effects*
  • Seedlings / anatomy & histology
  • Seedlings / growth & development
  • Seedlings / physiology
  • Seedlings / radiation effects

Substances

  • Carbon Dioxide
  • Ribulose-Bisphosphate Carboxylase