Mechano-Informed Biomimetic Polymer Scaffolds by Incorporating Self-Powered Zinc Oxide Nanogenerators Enhance Motor Recovery and Neural Function
- PMID: 32633072
- DOI: 10.1002/smll.202000796
Mechano-Informed Biomimetic Polymer Scaffolds by Incorporating Self-Powered Zinc Oxide Nanogenerators Enhance Motor Recovery and Neural Function
Abstract
Piezoelectric materials can produce electrical power from the mechanical stimulation and thus, they may accelerate electroactive tissue healing as a promising treatment for traumatic peripheral nerve injuries. In this study, a piezoelectric zinc oxide nanogenerator scaffold is manufactured by 3D injectable multilayer biofabrication. The piezoelectric polymeric scaffold displays desirable mechanical and physical characteristics, such as aligned porosity, high elasticity, scaffold stiffness, surface energy, and excellent shear behavior. In addition, its biocompatibility supplies Schwann cells with an adhesive, proliferative, and angiogenic interface, as is reflected by higher expression of functional proteins including nerve growth factor (NGF) and vascular endothelial growth factor (VEGF). In vivo mechanical stimuli by treadmill practice contribute to the comprehensive reparative therapy. The piezoelectric conduit accelerates nerve conducting velocity, promotes axonal remyelination, and restores motor function by recovering endplate muscles. Moreover, the piezoelectric nanogenerator scaffold creates biomimetic electrically conductive microenvironment without causing noticeable toxicity to functioning organs and improves peripheral nerve restoration by the multifunctional characteristics. Therefore, the mechano-informed biomimetic piezoelectric scaffold may have enormous potential in the neuroengineering for regenerative medicine.
Keywords: biomimetic polymer scaffolds; nanogenerators; piezoelectric materials; regenerative medicine.
© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Similar articles
-
Wirelessly Powered Electrical-Stimulation Based on Biodegradable 3D Piezoelectric Scaffolds Promotes the Spinal Cord Injury Repair.ACS Nano. 2022 Oct 25;16(10):16513-16528. doi: 10.1021/acsnano.2c05818. Epub 2022 Sep 29. ACS Nano. 2022. PMID: 36174221
-
Piezoelectric materials for neuroregeneration: a review.Biomater Sci. 2023 Nov 7;11(22):7296-7310. doi: 10.1039/d3bm01111a. Biomater Sci. 2023. PMID: 37812084 Review.
-
In vitro and in vivo studies of electroactive reduced graphene oxide-modified nanofiber scaffolds for peripheral nerve regeneration.Acta Biomater. 2019 Jan 15;84:98-113. doi: 10.1016/j.actbio.2018.11.032. Epub 2018 Nov 22. Acta Biomater. 2019. PMID: 30471474
-
A compound scaffold with uniform longitudinally oriented guidance cues and a porous sheath promotes peripheral nerve regeneration in vivo.Acta Biomater. 2018 Mar 1;68:223-236. doi: 10.1016/j.actbio.2017.12.010. Epub 2017 Dec 20. Acta Biomater. 2018. PMID: 29274478
-
Biomimetic conducting polymer-based tissue scaffolds.Curr Opin Biotechnol. 2013 Oct;24(5):847-54. doi: 10.1016/j.copbio.2013.03.011. Epub 2013 Apr 8. Curr Opin Biotechnol. 2013. PMID: 23578463 Review.
Cited by
-
Revealing an important role of piezoelectric polymers in nervous-tissue regeneration: A review.Mater Today Bio. 2024 Jan 11;25:100950. doi: 10.1016/j.mtbio.2024.100950. eCollection 2024 Apr. Mater Today Bio. 2024. PMID: 38318479 Free PMC article. Review.
-
Review of Piezoelectrical Materials Potentially Useful for Peripheral Nerve Repair.Biomedicines. 2023 Dec 1;11(12):3195. doi: 10.3390/biomedicines11123195. Biomedicines. 2023. PMID: 38137416 Free PMC article. Review.
-
Physical stimuli-emitting scaffolds: The role of piezoelectricity in tissue regeneration.Mater Today Bio. 2023 Jul 20;22:100740. doi: 10.1016/j.mtbio.2023.100740. eCollection 2023 Oct. Mater Today Bio. 2023. PMID: 37521523 Free PMC article. Review.
-
Ropivacaine microsphere-loaded electroconductive nerve dressings for long-acting analgesia and functional recovery following diabetic peripheral nerve injury.Mater Today Bio. 2023 Jun 23;21:100712. doi: 10.1016/j.mtbio.2023.100712. eCollection 2023 Aug. Mater Today Bio. 2023. PMID: 37448664 Free PMC article.
-
Engineered hydrogels for peripheral nerve repair.Mater Today Bio. 2023 May 19;20:100668. doi: 10.1016/j.mtbio.2023.100668. eCollection 2023 Jun. Mater Today Bio. 2023. PMID: 37273791 Free PMC article. Review.
References
-
- N. B. Fadia, J. M. Bliley, G. A. DiBernardo, D. J. Crammond, B. K. Schilling, W. N. Sivak, A. M. Spiess, K. M. Washington, M. Waldner, H. T. Liao, I. B. James, D. M. Minteer, C. Tompkins-Rhoades, A. R. Cottrill, D. Y. Kim, R. Schweizer, D. A. Bourne, G. E. Panagis, M.2nd Asher Schusterman, F. M. Egro, I. K. Campwala, T. Simpson, D. J. Weber, T. 2nd Gause, J. E. Brooker, T. Josyula, A. A. Guevara, A. J. Repko, C. M. Mahoney, K. G. Marra, Sci. Transl. Med. 2020, 12, eaav7753.
-
- S. Houshyar, A. Bhattacharyya, R. Shanks, ACS Chem. Neurosci. 2019, 10, 3349.
-
- M. Dong, X. Wang, X. Z. Chen, F. Mushtaq, S. Deng, C. Zhu, H. Torlakcik, A. Terzopoulou, X. H. Qin, X. Xiao, J. Puigmartí-Luis, H. Choi, A. P. Pêgo, Q. D. Shen, B. J. Nelson, S. Pané, Adv. Funct. Mater. 2020, 30, 1910323.
-
- G. Murillo, A. Blanquer, C. Vargas-Estevez, L. Barrios, E. Ibáñez, C. Nogués, J. Esteve, Adv. Mater. 2017, 29, 1605048.
-
- Y. Qian, X. Zhao, Q. Han, W. Chen, H. Li, W. Yuan, Nat. Commun. 2018, 9, 323.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
