Human Paramyxovirus Infections Induce T Cells That Cross-React with Zoonotic Henipaviruses
- PMID: 32636246
- PMCID: PMC7343989
- DOI: 10.1128/mBio.00972-20
Human Paramyxovirus Infections Induce T Cells That Cross-React with Zoonotic Henipaviruses
Abstract
Humans are infected with paramyxoviruses of different genera early in life, which induce cytotoxic T cells that may recognize conserved epitopes. This raises the question of whether cross-reactive T cells induced by antecedent paramyxovirus infections provide partial protection against highly lethal zoonotic Nipah virus infections. By characterizing a measles virus-specific but paramyxovirus cross-reactive human T cell clone, we discovered a highly conserved HLA-B*1501-restricted T cell epitope in the fusion protein. Using peptides, tetramers, and single cell sorting, we isolated a parainfluenza virus-specific T cell clone from a healthy adult and showed that both clones cleared Nipah virus-infected cells. We identified multiple conserved hot spots in paramyxovirus proteomes that contain other potentially cross-reactive epitopes. Our data suggest that, depending on HLA haplotype and history of paramyxovirus exposures, humans may have cross-reactive T cells that provide protection against Nipah virus. The effect of preferential boosting of these cross-reactive epitopes needs to be further studied in light of paramyxovirus vaccination studies.IMPORTANCE Humans encounter multiple paramyxoviruses early in life. This study shows that infection with common paramyxoviruses can induce T cells cross-reactive with the highly pathogenic Nipah virus. This demonstrates that the combination of paramyxovirus infection history and HLA haplotype affects immunity to phylogenetically related zoonotic paramyxoviruses.
Keywords: Nipah virus; T cells; human parainfluenza virus; measles virus; paramyxovirus.
Copyright © 2020 de Vries et al.
Figures
Similar articles
-
Zoonotic Potential of Emerging Paramyxoviruses: Knowns and Unknowns.Adv Virus Res. 2017;98:1-55. doi: 10.1016/bs.aivir.2016.12.001. Epub 2017 Feb 2. Adv Virus Res. 2017. PMID: 28433050 Free PMC article. Review.
-
Third Helical Domain of the Nipah Virus Fusion Glycoprotein Modulates both Early and Late Steps in the Membrane Fusion Cascade.J Virol. 2020 Sep 15;94(19):e00644-20. doi: 10.1128/JVI.00644-20. Print 2020 Sep 15. J Virol. 2020. PMID: 32669342 Free PMC article.
-
A Computational Approach for Designing a Universal Epitope-Based Peptide Vaccine Against Nipah Virus.Interdiscip Sci. 2015 Jun;7(2):177-85. doi: 10.1007/s12539-015-0023-0. Epub 2015 Jul 9. Interdiscip Sci. 2015. PMID: 26156209
-
T-cell Epitope-based Vaccine Design for Nipah Virus by Reverse Vaccinology Approach.Comb Chem High Throughput Screen. 2020;23(8):788-796. doi: 10.2174/1386207323666200427114343. Comb Chem High Throughput Screen. 2020. PMID: 32338213
-
Nipah virus: transmission of a zoonotic paramyxovirus.Curr Opin Virol. 2017 Feb;22:97-104. doi: 10.1016/j.coviro.2016.12.003. Epub 2017 Jan 11. Curr Opin Virol. 2017. PMID: 28088124 Review.
Cited by
-
The Immunobiology of Nipah Virus.Microorganisms. 2022 Jun 6;10(6):1162. doi: 10.3390/microorganisms10061162. Microorganisms. 2022. PMID: 35744680 Free PMC article. Review.
-
Evaluation of Molecular Point-of-Care Testing for Respiratory Pathogens in Children With Respiratory Infections: A Retrospective Case-Control Study.Front Cell Infect Microbiol. 2021 Nov 19;11:778808. doi: 10.3389/fcimb.2021.778808. eCollection 2021. Front Cell Infect Microbiol. 2021. PMID: 34869077 Free PMC article.
References
-
- Amarasinghe GK, Ayllón MA, Bào Y, Basler CF, Bavari S, Blasdell KR, Briese T, Brown PA, Bukreyev A, Balkema-Buschmann A, Buchholz UJ, Chabi-Jesus C, Chandran K, Chiapponi C, Crozier I, de Swart RL, Dietzgen RG, Dolnik O, Drexler JF, Dürrwald R, Dundon WG, Duprex WP, Dye JM, Easton AJ, Fooks AR, Formenty PBH, Fouchier RAM, Freitas-Astúa J, Griffiths A, Hewson R, Horie M, Hyndman TH, Jiāng D, Kitajima EW, Kobinger GP, Kondō H, Kurath G, Kuzmin IV, Lamb RA, Lavazza A, Lee B, Lelli D, Leroy EM, Lǐ J, Maes P, Marzano S-YL, Moreno A, Mühlberger E, Netesov SV, Nowotny N, Nylund A, Økland AL, Palacios G, Pályi B, Pawęska JT, Payne SL, Prosperi A, Ramos-González PL, Rima BK, Rota P, Rubbenstroth D, Shī M, Simmonds P, Smither SJ, Sozzi E, Spann K, Stenglein MD, Stone DM, Takada A, Tesh RB, Tomonaga K, Tordo N, Towner JS, van den Hoogen B, Vasilakis N, Wahl V, Walker PJ, Wang L-F, Whitfield AE, Williams JV, Zerbini FM, Zhāng T, Zhang Y-Z, Kuhn JH. 2019. Taxonomy of the order Mononegavirales: update 2019. Arch Virol 164:1967–1980. doi:10.1007/s00705-019-04247-4. - DOI - PMC - PubMed
-
- Weinberg GA, Hall CB, Iwane MK, Poehling KA, Edwards KM, Griffin MR, Staat MA, Curns AT, Erdman DD, Szilagyi PG, New Vaccine Surveillance Network. 2009. Parainfluenza virus infection of young children: estimates of the population-based burden of hospitalization. J Pediatr 154:694–699. doi:10.1016/j.jpeds.2008.11.034. - DOI - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
