Longitudinal ComBat: A method for harmonizing longitudinal multi-scanner imaging data
- PMID: 32640273
- PMCID: PMC7605103
- DOI: 10.1016/j.neuroimage.2020.117129
Longitudinal ComBat: A method for harmonizing longitudinal multi-scanner imaging data
Abstract
While aggregation of neuroimaging datasets from multiple sites and scanners can yield increased statistical power, it also presents challenges due to systematic scanner effects. This unwanted technical variability can introduce noise and bias into estimation of biological variability of interest. We propose a method for harmonizing longitudinal multi-scanner imaging data based on ComBat, a method originally developed for genomics and later adapted to cross-sectional neuroimaging data. Using longitudinal cortical thickness measurements from 663 participants in the Alzheimer's Disease Neuroimaging Initiative (ADNI) study, we demonstrate the presence of additive and multiplicative scanner effects in various brain regions. We compare estimates of the association between diagnosis and change in cortical thickness over time using three versions of the ADNI data: unharmonized data, data harmonized using cross-sectional ComBat, and data harmonized using longitudinal ComBat. In simulation studies, we show that longitudinal ComBat is more powerful for detecting longitudinal change than cross-sectional ComBat and controls the type I error rate better than unharmonized data with scanner included as a covariate. The proposed method would be useful for other types of longitudinal data requiring harmonization, such as genomic data, or neuroimaging studies of neurodevelopment, psychiatric disorders, or other neurological diseases.
Keywords: ADNI; Alzheimer’s; ComBat; Cortical thickness; Harmonization; MRI.
Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.
Figures
Similar articles
-
A multi-scanner neuroimaging data harmonization using RAVEL and ComBat.Neuroimage. 2021 Dec 15;245:118703. doi: 10.1016/j.neuroimage.2021.118703. Epub 2021 Nov 1. Neuroimage. 2021. PMID: 34736996 Free PMC article.
-
Cross-scanner and cross-protocol multi-shell diffusion MRI data harmonization: Algorithms and results.Neuroimage. 2020 Nov 1;221:117128. doi: 10.1016/j.neuroimage.2020.117128. Epub 2020 Jul 13. Neuroimage. 2020. PMID: 32673745 Free PMC article.
-
A comparison of methods to harmonize cortical thickness measurements across scanners and sites.Neuroimage. 2022 Nov 1;261:119509. doi: 10.1016/j.neuroimage.2022.119509. Epub 2022 Jul 30. Neuroimage. 2022. PMID: 35917919 Free PMC article.
-
Site effects how-to and when: An overview of retrospective techniques to accommodate site effects in multi-site neuroimaging analyses.Front Neurol. 2022 Oct 31;13:923988. doi: 10.3389/fneur.2022.923988. eCollection 2022. Front Neurol. 2022. PMID: 36388214 Free PMC article. Review.
-
A Review of Neuroimaging-Driven Brain Age Estimation for Identification of Brain Disorders and Health Conditions.IEEE Rev Biomed Eng. 2023;16:371-385. doi: 10.1109/RBME.2021.3107372. Epub 2023 Jan 5. IEEE Rev Biomed Eng. 2023. PMID: 34428153 Review.
Cited by
-
Merging or ensembling: integrative analysis in multiple neuroimaging studies.Biometrics. 2024 Jan 29;80(1):ujae003. doi: 10.1093/biomtc/ujae003. Biometrics. 2024. PMID: 38465984
-
Effects of gene dosage and development on subcortical nuclei volumes in individuals with 22q11.2 copy number variations.Neuropsychopharmacology. 2024 Mar 2. doi: 10.1038/s41386-024-01832-3. Online ahead of print. Neuropsychopharmacology. 2024. PMID: 38431758
-
Efficacy of MRI data harmonization in the age of machine learning: a multicenter study across 36 datasets.Sci Data. 2024 Jan 23;11(1):115. doi: 10.1038/s41597-023-02421-7. Sci Data. 2024. PMID: 38263181 Free PMC article.
-
A deep neural network estimation of brain age is sensitive to cognitive impairment and decline.Pac Symp Biocomput. 2024;29:148-162. Pac Symp Biocomput. 2024. PMID: 38160276 Free PMC article.
-
BrainAGE Estimation: Influence of Field Strength, Voxel Size, Race, and Ethnicity.medRxiv [Preprint]. 2023 Dec 5:2023.12.05.23299222. doi: 10.1101/2023.12.05.23299222. medRxiv. 2023. PMID: 38106123 Free PMC article. Preprint.
References
-
- Bates D, Mächler M, Bolker B, Walker S, 2015. Fitting linear mixed-effects models using lme4. J. Stat. Software 67 (1), 1–48.
-
- Conover WJ, Johnson ME, Johnson MM, 1981. A comparative study of tests for homogeneity of variances, with applications to the outer continental shelf bidding data. Technometrics 23 (4), 351–361.
-
- Dickerson BC, Bakkour A, Salat DH, Feczko E, Pacheco J, Greve DN, Grodstein F, Wright CI, Blacker D, Rosas HD, et al., 2008. The cortical signature of Alzheimer’s disease: regionally specific cortical thinning relates to symptom severity in very mild to mild AD dementia and is detectable in asymptomatic amyloid-positive individuals. Cerebr. Cortex 19 (3), 497–510. - PMC - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
