Characterization of inositol 1,4,5-trisphosphate-stimulated calcium release from rat cerebellar microsomal fractions. Comparison with [3H]inositol 1,4,5-trisphosphate binding

Biochem J. 1988 Oct 15;255(2):677-83.

Abstract

The abilities of D-myo-inositol phosphates (InsPs) to promote Ca2+ release and to compete for D-myo-[3H]-inositol 1,4,5-trisphosphate [( 3H]Ins(1,4,5)P3) binding were examined with microsomal preparations from rat cerebellum. Of the seven InsPs examined, only Ins(1,4,5)P3, Ins(2,4,5)P3 and Ins(4,5)P2 stimulated the release of Ca2+. Ca2+ release was maximal in 4-6 s and was followed by a rapid re-accumulation of Ca2+ into the Ins(1,4,5)P3-sensitive compartment after Ins(1,4,5)P3, but not after Ins(2,4,5)P3 or Ins(4,5)P2. Ca2+ re-accumulation after Ins(1,4,5)P3 was also faster than after pulse additions of Ca2+, and coincided with the metabolism of [3H]Ins(1,4,5)P3. These data suggest that Ins(1,4,5)P3-induced Ca2+ release and the accompanying decrease in intraluminal Ca2+ stimulate the Ca2+ pump associated with the Ins(1,4,5)P3-sensitive compartment. That this effect was observed only after Ins(1,4,5)P3 may reflect differences in either the metabolic rates of the various InsPs or an effect of the Ins(1,4,5)P3 metabolite Ins(1,3,4,5)P4 to stimulate refilling of the Ins(1,4,5)P3-sensitive store. InsP-induced Ca2+ release was concentration-dependent, with EC50 values (concn. giving half-maximal release) of 60, 800 and 6500 nM for Ins(1,4,5)P3, Ins(2,4,5)P3 and Ins(4,5)P2 respectively. Ins(1,4,5)P3, Ins(2,4,5)P3 and Ins(4,5)P2 also competed for [3H]Ins(1,4,5)P3 binding, with respective IC50 values (concn. giving 50% inhibition) of 100, 850 and 13,000 nM. Comparison of the EC50 and IC50 values yielded a significant correlation (r = 0.991). These data provide evidence of an association between the [3H]Ins(1,4,5)P3-binding site and the receptor mediating Ins(1,4,5)P3-induced Ca2+ release.

MeSH terms

  • Animals
  • Binding, Competitive
  • Calcium / metabolism*
  • Cerebellum / drug effects
  • Cerebellum / metabolism*
  • Inosine Diphosphate / metabolism
  • Inositol 1,4,5-Trisphosphate
  • Inositol Phosphates / metabolism
  • Inositol Phosphates / pharmacology*
  • Male
  • Microsomes / drug effects
  • Microsomes / metabolism
  • Rats
  • Rats, Inbred Strains
  • Stimulation, Chemical
  • Sugar Phosphates / pharmacology*
  • Tritium

Substances

  • Inositol Phosphates
  • Sugar Phosphates
  • Tritium
  • Inositol 1,4,5-Trisphosphate
  • Inosine Diphosphate
  • Calcium