It takes two to tango - The case of thebaine 6-O-demethylase

Int J Biol Macromol. 2020 Nov 15:163:718-729. doi: 10.1016/j.ijbiomac.2020.07.030. Epub 2020 Jul 7.

Abstract

Thebaine 6-O-demethylase (T6ODM) is an Fe(II)/2-oxoglutarate-dependent dioxygenase catalysing two oxidative O-demethylation reactions in morphine biosynthesis. Its crystal structure revealed a large active site pocket which is at least two times larger than necessary to accommodate a substrate (thebaine or oripavine) molecule. Since so far no crystal structures have been obtained for enzyme-substrate complex, which is necessary to explain the enzyme regiospecificity towards the C6-bound methoxy group, in this work we used computational methods and multi-parametric surface plasmon resonance measurements to elucidate the most likely structure of this complex and the reaction mechanism starting therefrom. Results of simulations and experiments unanimously indicate that the enzyme-substrate complex of T6ODM has a 1:2 stoichiometry. The key residues responsible for substrate binding are: Val-128, Glu-133, Met-150 and Agr-219 for the substrate in the distal position, and Asp-144, Leu-235 and Leu-353 for the proximal substrate molecule. QM/MM and DFT calculations show that the oxo ligand is bound trans to His-295 and the enzyme catalyzes hydroxylation of the C6-bound methoxy group according to the established rebound mechanism. The final stage of the demethylation reaction, which includes deformylation and enol-keton tautomerization steps, is most likely catalysed by water molecules and takes place in the solvent.

Keywords: 2-oxoglutarate dependent oxygenase; Morphine; Non-heme iron; O-demethylase; Reaction mechanism; Thebaine.

MeSH terms

  • Biocatalysis
  • Density Functional Theory
  • Hydroxylation
  • Ligands
  • Molecular Conformation
  • Molecular Docking Simulation
  • Molecular Dynamics Simulation
  • Molecular Structure
  • Oxidoreductases, O-Demethylating / chemistry*
  • Protein Binding
  • Structure-Activity Relationship
  • Substrate Specificity
  • Thebaine / chemistry*

Substances

  • Ligands
  • Thebaine
  • Oxidoreductases, O-Demethylating