Flavin Adenine Dinucleotide-Dependent Halogenase XanH and Engineering of Multifunctional Fusion Halogenases

Appl Environ Microbiol. 2020 Sep 1;86(18):e01225-20. doi: 10.1128/AEM.01225-20. Print 2020 Sep 1.

Abstract

Xantholipin (compound 1), a polycyclic xanthone antibiotic, exhibited strong antibacterial activities and showed potent cytotoxicity. The biosynthetic gene cluster of compound 1 has been identified in our previous work, and the construction of xanthone nucleus has been well demonstrated. However, limited information of the halogenation involved in compound 1 biosynthesis is available. In this study, based on the genetic manipulation and biochemical assay, we characterized XanH as an indispensable flavin adenine dinucleotide (FAD)-dependent halogenase (FDH) for the biosynthesis of compound 1. XanH was found to be a bifunctional protein capable of flavin reduction and chlorination and exclusively used the NADH. However, the reduced flavin could not be fully and effectively utilized, and the presence of an extra flavin reductase (FDR) and chemical-reducing agent could promote the halogenation. XanH accepted its natural free-standing substrate with angular fused polycyclic aromatic systems. Meanwhile, it exhibited moderate halogenation activity and possessed high substrate specificity. The requirement of extra FDR for higher halogenation activity is tedious for future engineering. To facilitate efforts in engineering XanH derivative proteins, we constructed the self-sufficient FDR-XanH fusion proteins. The fusion protein E1 with comparable activities to that of XanH could be used as a good alternative for future protein engineering. Taken together, these findings reported here not only improve the understanding of polycyclic xanthones biosynthesis but also expand the substrate scope of FDH and pave the way for future engineering of biocatalysts for new active substance synthesis.IMPORTANCE Halogenation is important in medicinal chemistry and plays an essential role in the biosynthesis of active secondary metabolites. Halogenases have evolved to catalyze reactions with high efficiency and selectivity, and engineering efforts have been made to engage the selective reactivity in natural product biosynthesis. The enzymatic halogenations are an environmentally friendly approach with high regio- and stereoselectivity, which make it a potential complement to organic synthesis. FDHs constitute one of the most extensively elucidated class of halogenases; however, the inventory awaits to be expanded for biotechnology applications and for the generation of halogenated natural product analogues. In this study, XanH was found to reduce flavin and halogenated the freely diffusing natural substrate with an angular fused hexacyclic scaffold, findings which were different from those for the exclusively studied FDHs. Moreover, the FDR-XanH fusion protein E1 with comparable reactivity to that of XanH serves as a successful example of genetic fusions and sets an important stage for future protein engineering.

Keywords: flavin-dependent halogenases; halogenation; polycyclic xanthone antibiotics; protein engineering; xantholipin.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Bacterial Proteins / genetics*
  • Bacterial Proteins / metabolism
  • Escherichia coli / genetics*
  • Escherichia coli / metabolism
  • Escherichia coli Proteins / genetics
  • Escherichia coli Proteins / metabolism
  • Flavin-Adenine Dinucleotide / metabolism*
  • Halogenation
  • Metabolic Engineering
  • Streptomyces / genetics*
  • Streptomyces / metabolism

Substances

  • Bacterial Proteins
  • Escherichia coli Proteins
  • Flavin-Adenine Dinucleotide

Supplementary concepts

  • Streptomyces flavogriseus