A Generic Procedure for the Isolation of pH- and Magnesium-Responsive Chicken scFvs for Downstream Purification of Human Antibodies

Front Bioeng Biotechnol. 2020 Jun 23;8:688. doi: 10.3389/fbioe.2020.00688. eCollection 2020.


Affinity chromatography provides an excellent platform for protein purification, which is a key step in the large scale downstream processing of therapeutic monoclonal antibodies (Mabs). Protein A chromatography constitutes the gold standard for Mab purification. However, the required acidic conditions (2.8-3.5) for elution from the affinity matrix limit their applicability, particularly for next generation antibodies and antibody fusion proteins, since denaturation and irreversible aggregation can occur due to the acidic buffer conditions. Here we describe a generic procedure for the generation of antigen-specific chromatography ligands with tailor-made elution conditions. To this end, we generated a scFv-library based on mRNA from a chicken immunized with human Fc. The antibody repertoire was displayed on yeast Saccharomyces cerevisiae screened via FACS toward pH- and magnesium-responsive scFvs which specifically recognize human IgG antibodies. Isolated scFvs were reformatted, produced in Escherichia coli and immobilized on NHS-agarose columns. Several scFvs were identified that mediated antibody binding at neutral pH and antibody recovery at pH values of 4.5 and higher or even at neutral pH upon MgCl2 exposure. The iterative screening methodology established here is generally amenable to the straightforward isolation of stimulus-responsive antibodies that may become valuable tools for a variety of applications.

Keywords: affinity chromatography; chicken antibody; downstream processing; immune library; protein A; protein purification; single chain fragment variable; yeast display.