Effect of racket-shuttlecock impact location on shot outcome for badminton smashes by elite players

J Sports Sci. 2020 Nov;38(21):2471-2478. doi: 10.1080/02640414.2020.1792132. Epub 2020 Jul 14.


A logarithmic curve fitting methodology for the calculation of badminton racket-shuttlecock impact locations from three-dimensional motion capture data was presented and validated. Median absolute differences between calculated and measured impact locations were 3.6 [IQR: 4.4] and 3.5 [IQR: 3.5] mm mediolaterally and longitudinally on the racket face, respectively. Three-dimensional kinematic data of racket and shuttlecock were recorded for 2386 smashes performed by 65 international badminton players, with racket-shuttlecock impact location assessed against instantaneous post-impact shuttlecock speed and direction. Mediolateral and longitudinal impact locations explained 26.2% (quadratic regression; 95% credible interval: 23.1%, 29.2%; BF10 = 1.3 × 10131, extreme; p < 0.001) of the variation in participant-specific shuttlecock speed. A meaningful (BF10 = ∞, extreme; p < 0.001) linear relationship was observed between mediolateral impact location and shuttlecock horizontal direction relative to a line normal to the racket face at impact. Impact locations within one standard deviation of the pooled mean impact location predict reductions in post-impact shuttlecock speeds of up to 5.3% of the player's maximal speed and deviations in the horizontal direction of up to 2.9° relative to a line normal to the racket face. These results highlight the margin for error available to elite badminton players during the smash.

Keywords: Racket; contact; direction; shuttle; speed.

MeSH terms

  • Athletic Performance / physiology*
  • Biomechanical Phenomena
  • Humans
  • Motor Skills / physiology*
  • Movement
  • Racquet Sports / physiology*
  • Sports Equipment
  • Time and Motion Studies