Systematic errors in diffusion coefficients from long-time molecular dynamics simulations at constant pressure

J Chem Phys. 2020 Jul 14;153(2):021101. doi: 10.1063/5.0008316.

Abstract

In molecular dynamics simulations under periodic boundary conditions, particle positions are typically wrapped into a reference box. For diffusion coefficient calculations using the Einstein relation, the particle positions need to be unwrapped. Here, we show that a widely used heuristic unwrapping scheme is not suitable for long simulations at constant pressure. Improper accounting for box-volume fluctuations creates, at long times, unphysical trajectories and, in turn, grossly exaggerated diffusion coefficients. We propose an alternative unwrapping scheme that resolves this issue. At each time step, we add the minimal displacement vector according to periodic boundary conditions for the instantaneous box geometry. Here and in another paper [J. T. Bullerjahn, S. von Bülow, and G. Hummer, J. Chem. Phys. 153, 024116 (2020)], we apply the new unwrapping scheme to extensive molecular dynamics and Brownian dynamics simulation data. We provide practitioners with a formula to assess if and by how much earlier results might have been affected by the widely used heuristic unwrapping scheme.