A novel immunosensor for the monitoring of PSA using binding of biotinylated antibody to the prostate specific antigen based on nano-ink modified flexible paper substrate: efficient method for diagnosis of cancer using biosensing technology

Heliyon. 2020 Jul 7;6(7):e04327. doi: 10.1016/j.heliyon.2020.e04327. eCollection 2020 Jul.

Abstract

Prostate cancer is the most significant reason for deaths in men, outside of lung cancer. The clinical examination of cancer proteins or biomarkers is extremely significant in early examination and monitoring of recurrence of disease after treatment. Biomarkers have expanded great clinical significance owing to their extensive spectra in the identification, elimination, early diagnosis and cure of cancer. In this work, novel, ultrasensitive sandwich-type portable bio device based on citrate-capped silver nanoparticles (Citrate-AgNPs) modified graphene quantum dots (GQDs) nano ink for detection of Prostate specific antigen (PSA) was fabricated. Functionalized cysteamine with gold nanoparticles (Cys-AuNPs) was also utilized to amplify the signal. It provides a good and high external area for the immobilization biotinylated antibody of PSA in the large amount. For the first time, citrate-AgNPs-GQDs nano ink was directly written on the cellulose paper surface (ivory sheet and photographic paper) and modified by Cys-AuNPs. So, final structure of the immunodevices was completed after including of Ab1 and PSA (antigen). The immunosensors were used for the recognition of PSA by using DPVs (differential pulse voltammetry) technique. The obtained low limit of quantification (LLOQ) of the first immunodevice (ivory sheet/Citrate AgNPs-GQDs nano-ink/CysA-Au NPs/Ab1/BSA/PSA/Ab2) was 0.07 μg/L and the linear range for the calibration plot was from 0.07 to 60 μg/L. Also, the achieved LLOQ of the second immunodevice (photographic paper/Citrate AgNPs-GQDs nano-ink/Cys-Au NPs/Ab1/BSA/PSA/Ab2) was 0.05 μg/L with the linear range of 10 to 0.05 μg/L. It is noteworthy that, proposed immunoassay was effectively utilized to the monitoring of PSA glycoprotein in unprocessed human plasma sample. Obtained results show that the constructed immunosensor is able to apply as portable bio device for the clinical analysis of PSA in human plasma samples.

Keywords: Affinity binding; Biomedical analysis; Biomedical engineering; Cancer research; Conductive ink; Electrochemistry; Immunodevice; Immunology; Nanostructure; Nanotechnology; Prostate cancer.