Respiratory mechanics and gas exchanges in the early course of COVID-19 ARDS: a hypothesis-generating study

Ann Intensive Care. 2020 Jul 16;10(1):95. doi: 10.1186/s13613-020-00716-1.


Rationale: COVID-19 ARDS could differ from typical forms of the syndrome.

Objective: Pulmonary microvascular injury and thrombosis are increasingly reported as constitutive features of COVID-19 respiratory failure. Our aim was to study pulmonary mechanics and gas exchanges in COVID-2019 ARDS patients studied early after initiating protective invasive mechanical ventilation, seeking after corresponding pathophysiological and biological characteristics.

Methods: Between March 22 and March 30, 2020 respiratory mechanics, gas exchanges, circulating endothelial cells (CEC) as markers of endothelial damage, and D-dimers were studied in 22 moderate-to-severe COVID-19 ARDS patients, 1 [1-4] day after intubation (median [IQR]).

Measurements and main results: Thirteen moderate and 9 severe COVID-19 ARDS patients were studied after initiation of high PEEP protective mechanical ventilation. We observed moderately decreased respiratory system compliance: 39.5 [33.1-44.7] mL/cmH2O and end-expiratory lung volume: 2100 [1721-2434] mL. Gas exchanges were characterized by hypercapnia 55 [44-62] mmHg, high physiological dead-space (VD/VT): 75 [69-85.5] % and ventilatory ratio (VR): 2.9 [2.2-3.4]. VD/VT and VR were significantly correlated: r2 = 0.24, p = 0.014. No pulmonary embolism was suspected at the time of measurements. CECs and D-dimers were elevated as compared to normal values: 24 [12-46] cells per mL and 1483 [999-2217] ng/mL, respectively.

Conclusions: We observed early in the course of COVID-19 ARDS high VD/VT in association with biological markers of endothelial damage and thrombosis. High VD/VT can be explained by high PEEP settings and added instrumental dead space, with a possible associated role of COVID-19-triggered pulmonary microvascular endothelial damage and microthrombotic process.

Keywords: ARDS; COVID-19; Physiological dead-space; Ventilatory ratio.