Biochemical Composition of Cumin Seeds, and Biorefining Study

Biomolecules. 2020 Jul 15;10(7):1054. doi: 10.3390/biom10071054.

Abstract

A new biorefinery approach has been developed in the present study, and applied on cumin (Cuminum cyminum) seeds as a potential source of phytochemicals of interest. Cumin is a popular spice used widely for its distinctive aroma. It is a rich reserve of both vegetable and essential oils. The biorefinery approach here focused on the evaluation of the influence of four different geographical origins (i.e., Lebanon, France, Algeria and Syria) on oil yield and quality in cumin seed, and on the valorization of remaining by-products by investigating their nutritional content and biological activity for the first time. Vegetable and essential oils were extracted, and their compositions were determined. Nutritional traits were also assessed. The delipidated and hydrodistillated cakes just as aromatic water were characterized for their fiber, sugar, protein, phenol and flavonoid contents. Antibacterial and antioxidant activities were also determined. Cumin seeds showed high contents in both vegetable and essential oils, proteins and sugars regardless their origin. Moreover, this Apiaceae species exhibited high levels of petroselinic fatty acid (an isomer of oleic acid) and sterols. Cakes and aromatic water also presented high levels of proteins, fibers, sugars and phenols. These residues revealed interesting antioxidant and antibacterial activities. These results emphasized the potential use of cumin in a biorefinery concept, with a multi-purpose industrial process. In addition, large differences were observed between the four geographical origins for phytochemical contents and compositions. These findings highlight the perspectives for developing selection programs for nutritional traits and industrial interests. All obtained results validate the health promoting effect of cumin composition as well as its industrial importance along with the residues.

Keywords: Cuminum cyminum; antimicrobial activity; antioxidant activity; by-products; essential oils; genotypic diversity; sustainability; vegetable oil.