Design, expression, purification and crystallization of human 14-3-3ζ protein chimera with phosphopeptide from proapoptotic protein BAD

Protein Expr Purif. 2020 Jul 16;175:105707. doi: 10.1016/j.pep.2020.105707. Online ahead of print.

Abstract

14-3-3 protein isoforms regulate multiple processes in eukaryotes, including apoptosis and cell division. 14-3-3 proteins preferentially recognize phosphorylated unstructured motifs, justifying the protein-peptide binding approach to study 14-3-3/phosphotarget complexes. Tethering of human 14-3-3σ with partner phosphopeptides via a short linker has provided structural information equivalent to the use of synthetic phosphopeptides, simultaneously facilitating purification and crystallization. Nevertheless, the broader applicability to other 14-3-3 isoforms and phosphopeptides was unclear. Here, we designed a novel 14-3-3ζ chimera with a conserved phosphopeptide from BAD, whose complex with 14-3-3 is a gatekeeper of apoptosis regulation. The chimera could be bacterially expressed and purified without affinity tags. Co-expressed PKA efficiently phosphorylates BAD within the chimera and blocks its interaction with a known 14-3-3 phosphotarget, suggesting occupation of the 14-3-3 grooves by the tethered BAD phosphopeptide. Efficient crystallization of the engineered protein suggests suitability of the "chimeric" approach for studies of other relevant 14-3-3 complexes.

Keywords: Phosphopeptides; Phosphorylation; Protein chimera; Protein-protein interactions; Untagged protein purification.