m6A methyltransferase METTL3 maintains colon cancer tumorigenicity by suppressing SOCS2 to promote cell proliferation

Oncol Rep. 2020 Sep;44(3):973-986. doi: 10.3892/or.2020.7665. Epub 2020 Jun 26.


N6‑methyladenosine (m6A) RNA modification maintained by N6‑methyltransferases and demethylases is involved in multiple biological functions. Methyltransferase like 3 (METTL3) is a major N6‑methyltransferase. However, the role of METTL3 and its installed m6A modification in colorectal tumorigenesis remains to be fully elucidated. METTL3 is highly expressed as indicated in colorectal cancer samples in the TCGA and Oncomine databases, implying its potential role in colon tumorigenesis. SW480 cell line with stable METTL3 knockout (METTL3‑KO) was generated using CRISPR/Cas9 and were confirmed by the loss of METTL3 expression and suppression of m6A modification. The proliferation of METTL3‑KO cells was significantly inhibited compared with that of control cells. METTL3‑KO decreased the decay rate of suppressor of cytokine signaling 2 (SOCS2) RNA, resulting in elevated SOCS2 protein expression. m6A‑RNA immunoprecipitation‑qPCR (MeRIP‑qPCR) revealed that SOCS2 mRNA was targeted by METTL3 for m6A modification. Similar to METTL3‑KO SW480 cells, SW480 cells treated with 3‑deazaadenosine, an RNA methylation inhibitor, exhibited elevated SOCS2 protein expression. Increased levels of SOCS2 in METTL3‑KO SW480 cells were associated with decreased expression of leucine‑rich repeat‑containing G protein‑coupled receptor 5 (LGR5), contributing to the inhibition of cell proliferation. The underlying associations among METTL3, SOCS2, and LGR5 were further confirmed in SW480 cells transfected with si‑METTL3 and in tumor samples from patients with colorectal cancer. Taken together, our data demonstrate that an increased level of METTL3 may maintain the tumorigenicity of colon cancer cells by suppressing SOCS2.

Keywords: m6 A modification; methyltransferase like 3; suppressor of cytokine signaling 2; colorectal cancer; tumorigenesis; leucine-rich repeat-containing G protein-coupled receptor 5.

Publication types

  • Observational Study

MeSH terms

  • Adenosine / analogs & derivatives
  • Adenosine / metabolism
  • Aged
  • Carcinogenesis / drug effects
  • Carcinogenesis / genetics*
  • Cell Line, Tumor
  • Cell Proliferation / drug effects
  • Cell Proliferation / genetics
  • Colectomy
  • Colon / pathology
  • Colon / surgery
  • Colonic Neoplasms / diagnosis
  • Colonic Neoplasms / genetics*
  • Colonic Neoplasms / pathology
  • Colonic Neoplasms / surgery
  • Datasets as Topic
  • Female
  • Gene Expression Regulation, Neoplastic / drug effects
  • Gene Expression Regulation, Neoplastic / genetics*
  • Gene Knockdown Techniques
  • Gene Knockout Techniques
  • Humans
  • Male
  • Methylation / drug effects
  • Methyltransferases / genetics
  • Methyltransferases / metabolism*
  • Middle Aged
  • Neoplasm Staging
  • RNA Stability / drug effects
  • RNA Stability / genetics
  • RNA, Messenger / metabolism
  • Receptors, G-Protein-Coupled / genetics
  • Spheroids, Cellular
  • Suppressor of Cytokine Signaling Proteins / genetics*
  • Tubercidin / pharmacology


  • LGR5 protein, human
  • RNA, Messenger
  • Receptors, G-Protein-Coupled
  • SOCS2 protein, human
  • Suppressor of Cytokine Signaling Proteins
  • 3-deazaadenosine
  • N-methyladenosine
  • Methyltransferases
  • METTL3 protein, human
  • Adenosine
  • Tubercidin