Effect of Shot Peening on Redistribution of Residual Stress Field in Friction Stir Welding of 2219 Aluminum Alloy
- PMID: 32708581
- PMCID: PMC7411698
- DOI: 10.3390/ma13143169
Effect of Shot Peening on Redistribution of Residual Stress Field in Friction Stir Welding of 2219 Aluminum Alloy
Abstract
Welding is one of the essential stages in the manufacturing process of mechanical structures. Friction stir welding structure of aluminum alloy has been used as a primary supporting member in aerospace equipment. However, friction stir welding inevitably generates residual stress that promotes the initiation and propagation of cracks, threatening the performance of the welded structure. Shot peening can effectively change the distribution of residual stress and improve the fatigue properties of materials. In this paper, friction stir welding and shot peening are performed on 2219 aluminum alloy plates. The residual stress fields induced by friction stir welding and shot peening are measured by using the X-ray diffraction method and incremental center hole drilling method, and the distribution characteristics of residual stress fields are analyzed. The effect of the pellet diameters and pellet materials used in shot peening on the redistribution of welding residual stress field are investigated. The pellet diameter used in the experiment is in the range of 0.6-1.2 mm, and the pellet material includes glass, steel, and corundum. This study provides guidance for the application of shot peening in friction stir welding structure of 2219 aluminum alloy.
Keywords: 2219 aluminum alloy; friction stir welding; residual stress; shot peening.
Conflict of interest statement
The authors declare no conflicts of interest.
Figures
Similar articles
-
Effect of Shot Peening on the Low-Cycle Fatigue Behavior of an AA2519-T62 Friction-Stir-Welded Butt Joint.Materials (Basel). 2023 Nov 11;16(22):7131. doi: 10.3390/ma16227131. Materials (Basel). 2023. PMID: 38005059 Free PMC article.
-
Effects of Underwater Friction Stir Welding Heat Generation on Residual Stress of AA6068-T6 Aluminum Alloy.Materials (Basel). 2022 Mar 17;15(6):2223. doi: 10.3390/ma15062223. Materials (Basel). 2022. PMID: 35329680 Free PMC article.
-
Analysis and Comparison of Friction Stir Welding and Laser Assisted Friction Stir Welding of Aluminum Alloy.Materials (Basel). 2013 Dec 18;6(12):5923-5941. doi: 10.3390/ma6125923. Materials (Basel). 2013. PMID: 28788430 Free PMC article.
-
Friction Stir Welding of Aluminum in the Aerospace Industry: The Current Progress and State-of-the-Art Review.Materials (Basel). 2023 Apr 8;16(8):2971. doi: 10.3390/ma16082971. Materials (Basel). 2023. PMID: 37109809 Free PMC article. Review.
-
Research Progress of Aluminum Alloy Welding/Plastic Deformation Composite Forming Technology in Achieving High-Strength Joints.Materials (Basel). 2023 Dec 15;16(24):7672. doi: 10.3390/ma16247672. Materials (Basel). 2023. PMID: 38138812 Free PMC article. Review.
Cited by
-
Selected Properties of the Surface Layer of C45 Steel Samples after Slide Burnishing.Materials (Basel). 2023 Sep 30;16(19):6513. doi: 10.3390/ma16196513. Materials (Basel). 2023. PMID: 37834649 Free PMC article.
-
Influence of Slide Burnishing Parameters on the Surface Layer Properties of Stainless Steel and Mean Positron Lifetime.Materials (Basel). 2022 Nov 16;15(22):8131. doi: 10.3390/ma15228131. Materials (Basel). 2022. PMID: 36431616 Free PMC article.
-
Advanced Surface Modification for 3D-Printed Titanium Alloy Implant Interface Functionalization.Front Bioeng Biotechnol. 2022 Mar 1;10:850110. doi: 10.3389/fbioe.2022.850110. eCollection 2022. Front Bioeng Biotechnol. 2022. PMID: 35299643 Free PMC article. Review.
-
Analysis of Surface Properties of Nickel Alloy Elements Exposed to Impulse Shot Peening with the Use of Positron Annihilation.Materials (Basel). 2021 Nov 30;14(23):7328. doi: 10.3390/ma14237328. Materials (Basel). 2021. PMID: 34885482 Free PMC article.
References
-
- Huang C., Li H., Li J., Luo C., Ni Y. Residual stress measurement on propellant tank of 2219 aluminum alloy and study on its weak spot. J. Mech. Sci. Technol. 2017;31:2213–2220. doi: 10.1007/s12206-017-0417-5. - DOI
-
- Wang G.Q., Zhao Y.H., Hao Y.F. Friction stir welding of high-strength aerospace aluminum alloy and application in rocket tank manufacturing. J. Mater. Sci. Technol. 2018;34:73–91. doi: 10.1016/j.jmst.2017.11.041. - DOI
-
- Jafari H., Mansouri H., Honarpisheh M. Investigation of residual stress distribution of dissimilar Al-7075-T6 and Al-6061-T6 in the friction stir welding process strengthened with SiO2 nanoparticles. J. Manuf. Process. 2019;43:145–153. doi: 10.1016/j.jmapro.2019.05.023. - DOI
-
- Brewer L.N., Bennett M.S., Baker B.W., Payzant E.A., Sochalski-Kolbus L.M. Characterization of residual stress as a function of friction stir welding parameters in oxide dispersion strengthened (ODS) steel MA956. Mater. Sci. Eng. A. 2015;647:314–321. doi: 10.1016/j.msea.2015.09.020. - DOI
Grants and funding
LinkOut - more resources
Full Text Sources
