Production of genome-edited mice by visualization of nucleases introduced into the embryos using electroporation

J Reprod Dev. 2020 Oct 13;66(5):469-473. doi: 10.1262/jrd.2020-068. Epub 2020 Jul 24.


Genome editing technology contributes to the quick and highly efficient production of genetically engineered animals. These animals are helpful in clarifying the mechanism of human disease. Recently, a new electroporation technique (TAKE: Technique for animal knockout system by electroporation) was developed to produce genome-edited animals by introducing nucleases into intact embryos using electroporation instead of the microinjection method. The aim of this study was to increase the efficiency of production of genome-edited animals using the TAKE method. In the conventional protocol, it was difficult to confirm the introduction of nucleases into embryos and energization during operation. Using only embryos that introduced nucleases for embryo transfer, it will lead to increased efficiency in the production of genome-edited animals. This study examined the visualization in the introduction of nucleases into the embryos by using nucleases fluorescent labeled with ATTO-550. The embryos were transfected with Cas9 protein and fluorescent labeled dual guide RNA (mixture with crRNA and tracrRNA with ATTO-550) targeted tyrosinase gene by the TAKE method. All embryos that survived after electroporation showed fluorescence. Of these embryos with fluorescence, 43.7% developed to morphologically normal offspring. In addition, 91.7% of offspring were edited by the tyrosinase gene. This study is the first to demonstrate that the introduction of nucleases into embryos by the TAKE method could be visualized using fluorescent-labeled nucleases. This improved TAKE method can be used to produce genome-edited animals and confirm energization during operation.

Keywords: CRISPR/Cas; Electroporation; Embryos; Genome editing; Mouse.

MeSH terms

  • Animals
  • CRISPR-Associated Protein 9 / genetics
  • CRISPR-Cas Systems
  • Clustered Regularly Interspaced Short Palindromic Repeats
  • Electroporation / methods*
  • Embryo Transfer
  • Female
  • Fluorescent Dyes / pharmacology
  • Gene Editing / methods*
  • Genome
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Inbred ICR
  • Microinjections
  • Microscopy, Fluorescence
  • RNA, Guide, CRISPR-Cas Systems


  • Fluorescent Dyes
  • RNA, Guide, CRISPR-Cas Systems
  • CRISPR-Associated Protein 9