[Research progress in chemical interactions between plants and phytophagous insects]

Ying Yong Sheng Tai Xue Bao. 2020 Jul;31(7):2151-2160. doi: 10.13287/j.1001-9332.202007.017.
[Article in Chinese]

Abstract

There are complex chemical interactions between plants and phytophagous insects. On the one hand, when infested by phytophagous insects, plants can recognize herbivore-associated molecular patterns and trigger early signaling events and phytohormone-mediated signaling pathways. The activated signaling pathways thus result in the reconfiguration of transcriptomes and metabolomes as well as the increases in direct and indirect defensive compounds in plants, which in turn enhance the resistance of plants to phytophagous insects. On the other hand, phytophagous insects can recognize defense responses in plants and then inhibit or adapt to plant chemical defenses by secreting effector, sequestrating and detoxifying defensive compounds, and/or reducing sensitivity to defensive compounds. The deep analysis of chemical interactions between plant and phytophagous insects could improve the understanding of the relationship between insects and plants in theory and also provide important theoretical and technical guidance for the development of new technologies for crop pest control in practice.

植物与植食性昆虫之间存在着复杂的化学相互作用。一方面,当遭受植食性昆虫为害时,植物能识别植食性昆虫相关分子模式,触发早期信号事件和激素信号转导途径,并由此引起转录组与代谢组重组、直接和间接防御化合物含量升高,最后提高对植食性昆虫的抗性。另一方面,植食性昆虫也能识别植物的防御反应,并能通过分泌效应子、选贮、解毒以及降低敏感性等反防御措施抑制或适应植物的化学防御。深入剖析植物与植食性昆虫的化学互作,不仅可在理论上丰富对昆虫与植物互作关系的理解,而且可在实践上为作物害虫防控新技术的开发提供重要的理论与技术指导。.

Keywords: defensive compound; effector; herbivore-associated molecular pattern; phytophagous insect; plant.

MeSH terms

  • Animals
  • Herbivory
  • Insecta*
  • Pest Control
  • Plant Growth Regulators
  • Plants*

Substances

  • Plant Growth Regulators