Calcium repletion to rats with calcipenic rickets fails to recover bone quality: A calcipenic "memory"

Bone. 2020 Dec:141:115562. doi: 10.1016/j.bone.2020.115562. Epub 2020 Jul 28.

Abstract

Calcipenic rickets is prevalent in underprivileged children in developing countries. Calcipenic rickets resulting from dietary calcium (Ca) deficiency decreases bone mass and deteriorates bone microstructure in humans. The effect of dietary Ca replenishment (CaR) on rachitic bones in animal models depends on the amount, critical period and duration of replenishment, however, the extent of recovery in various bone parameters including bone quality remains unclear. We investigated the effect of CaR in rat skeleton after inducing calcipenic rickets. Female SD rats (postnatal 28 days/P28) were rendered calcipenic by feeding calcium deficient (CaD) diet (0.1% Ca) till P70 while control SD rats were fed Ca sufficient diet (0.8% Ca). At P70, calcipenic rats were switched to 0.8% Ca diet till P150 for one group and P210 for another group (endpoint). The CaD groups received 0.1% Ca diet throughout the study (P210). In the CaD groups, serum Ca and phosphate, and bone mineral density (BMD) were significantly decreased whereas serum alkaline phosphatase (ALP), iPTH and CTX-1 were increased compared to age-matched controls. Moreover, at the endpoint, the CaD group had reduced bone mass, surface referent bone formation parameters, tissue mineralization and strength accompanied by the increased osteoid thickness and microarchitectural decay (measured by trabecular geometric parameters) with poor crystal packing. The CaR group showed complete recovery in serum Ca, iPTH, ALP and CTX-1, and BMD, however, the bone quality parameters including bone strength, microarchitectural decay, tissue mineralization, and crystallinity were incompletely restored. Decreased surface referent bone formation and increased unmineralized bones (osteoid) indicative of osteomalacia were also observed in the CaR group at P210 compared with control despite prolonged replenishment. We conclude that a prolonged Ca repletion following the induction of calcipenic rickets in rats although shows the recovery of biochemical measures of bone metabolism and bone mass, however, the bone quality remains compromised. This suggests that a "memory" of calcipenia occurring at the early growth stage persists in the skeleton of adult rats despite a prolonged Ca replenishment.

Keywords: BMD; Bone microarchitecture; Bone strength; Calcium deficiency; Crystallinity; Osteomalacia; Rickets.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Bone Density
  • Bone and Bones
  • Calcium
  • Calcium, Dietary*
  • Female
  • Rats
  • Rats, Sprague-Dawley
  • Rickets* / drug therapy

Substances

  • Calcium, Dietary
  • Calcium