Evolutionary and functional classification of the CARF domain superfamily, key sensors in prokaryotic antivirus defense
- PMID: 32735657
- PMCID: PMC7498327
- DOI: 10.1093/nar/gkaa635
Evolutionary and functional classification of the CARF domain superfamily, key sensors in prokaryotic antivirus defense
Abstract
CRISPR-associated Rossmann Fold (CARF) and SMODS-associated and fused to various effector domains (SAVED) are key components of cyclic oligonucleotide-based antiphage signaling systems (CBASS) that sense cyclic oligonucleotides and transmit the signal to an effector inducing cell dormancy or death. Most of the CARFs are components of a CBASS built into type III CRISPR-Cas systems, where the CARF domain binds cyclic oligoA (cOA) synthesized by Cas10 polymerase-cyclase and allosterically activates the effector, typically a promiscuous ribonuclease. Additionally, this signaling pathway includes a ring nuclease, often also a CARF domain (either the sensor itself or a specialized enzyme) that cleaves cOA and mitigates dormancy or death induction. We present a comprehensive census of CARF and SAVED domains in bacteria and archaea, and their sequence- and structure-based classification. There are 10 major families of CARF domains and multiple smaller groups that differ in structural features, association with distinct effectors, and presence or absence of the ring nuclease activity. By comparative genome analysis, we predict specific functions of CARF and SAVED domains and partition the CARF domains into those with both sensor and ring nuclease functions, and sensor-only ones. Several families of ring nucleases functionally associated with sensor-only CARF domains are also predicted.
Published by Oxford University Press on behalf of Nucleic Acids Research 2020.
Figures
Similar articles
-
Comprehensive search for accessory proteins encoded with archaeal and bacterial type III CRISPR-cas gene cassettes reveals 39 new cas gene families.RNA Biol. 2019 Apr;16(4):530-542. doi: 10.1080/15476286.2018.1483685. Epub 2018 Jun 19. RNA Biol. 2019. PMID: 29911924 Free PMC article.
-
Live virus-free or die: coupling of antivirus immunity and programmed suicide or dormancy in prokaryotes.Biol Direct. 2012 Nov 14;7:40. doi: 10.1186/1745-6150-7-40. Biol Direct. 2012. PMID: 23151069 Free PMC article.
-
CBASS Immunity Uses CARF-Related Effectors to Sense 3'-5'- and 2'-5'-Linked Cyclic Oligonucleotide Signals and Protect Bacteria from Phage Infection.Cell. 2020 Jul 9;182(1):38-49.e17. doi: 10.1016/j.cell.2020.05.019. Epub 2020 Jun 15. Cell. 2020. PMID: 32544385 Free PMC article.
-
The diverse arsenal of type III CRISPR-Cas-associated CARF and SAVED effectors.Biochem Soc Trans. 2022 Oct 31;50(5):1353-1364. doi: 10.1042/BST20220289. Biochem Soc Trans. 2022. PMID: 36282000 Free PMC article. Review.
-
The many faces of the helix-turn-helix domain: transcription regulation and beyond.FEMS Microbiol Rev. 2005 Apr;29(2):231-62. doi: 10.1016/j.femsre.2004.12.008. FEMS Microbiol Rev. 2005. PMID: 15808743 Review.
Cited by
-
Type III-B CRISPR-Cas cascade of proteolytic cleavages.Science. 2024 Feb 2;383(6682):512-519. doi: 10.1126/science.adk0378. Epub 2024 Feb 1. Science. 2024. PMID: 38301007
-
Nanopores Reveal the Stoichiometry of Single Oligoadenylates Produced by Type III CRISPR-Cas.ACS Nano. 2024 Jul 2;18(26):16505-16515. doi: 10.1021/acsnano.3c11769. Epub 2024 Jun 14. ACS Nano. 2024. PMID: 38875527 Free PMC article.
-
The CRISPR ancillary effector Can2 is a dual-specificity nuclease potentiating type III CRISPR defence.Nucleic Acids Res. 2021 Mar 18;49(5):2777-2789. doi: 10.1093/nar/gkab073. Nucleic Acids Res. 2021. PMID: 33590098 Free PMC article.
-
Structural basis of cyclic oligoadenylate degradation by ancillary Type III CRISPR-Cas ring nucleases.Nucleic Acids Res. 2021 Dec 2;49(21):12577-12590. doi: 10.1093/nar/gkab1130. Nucleic Acids Res. 2021. PMID: 34850143 Free PMC article.
-
Molecular basis of cyclic tetra-oligoadenylate processing by small standalone CRISPR-Cas ring nucleases.Nucleic Acids Res. 2022 Oct 28;50(19):11199-11213. doi: 10.1093/nar/gkac923. Nucleic Acids Res. 2022. PMID: 36271789 Free PMC article.
References
-
- Mohanraju P., Makarova K.S., Zetsche B., Zhang F., Koonin E.V., van der Oost J.. Diverse evolutionary roots and mechanistic variations of the CRISPR–Cas systems. Science. 2016; 353:aad5147. - PubMed
-
- Hille F., Richter H., Wong S.P., Bratovic M., Ressel S., Charpentier E.. The Biology of CRISPR–Cas: backward and Forward. Cell. 2018; 172:1239–1259. - PubMed
-
- Amitai G., Sorek R.. CRISPR–Cas adaptation: insights into the mechanism of action. Nat. Rev. Microbiol. 2016; 14:67–76. - PubMed
-
- Jackson S.A., McKenzie R.E., Fagerlund R.D., Kieper S.N., Fineran P.C., Brouns S.J.. CRISPR–Cas: adapting to change. Science. 2017; 356:eaal5056. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
