Hierarchical models of pain: Inference, information-seeking, and adaptive control
- PMID: 32739554
- DOI: 10.1016/j.neuroimage.2020.117212
Hierarchical models of pain: Inference, information-seeking, and adaptive control
Abstract
Computational models of pain consider how the brain processes nociceptive information and allow mapping neural circuits and networks to cognition and behaviour. To date, they have generally have assumed two largely independent processes: perceptual inference, typically modelled as an approximate Bayesian process, and action control, typically modelled as a reinforcement learning process. However, inference and control are intertwined in complex ways, challenging the clarity of this distinction. Here, we consider how they may comprise a parallel hierarchical architecture that combines inference, information-seeking, and adaptive value-based control. This sheds light on the complex neural architecture of the pain system, and takes us closer to understanding from where pain 'arises' in the brain.
Keywords: Endogenous modulation; Epistemic value; Free energy principle; Information theory; Nociception; Optimal control; Pain; Predictive coding; Reinforcement learning.
Copyright © 2020. Published by Elsevier Inc.
Similar articles
-
Pain: A Precision Signal for Reinforcement Learning and Control.Neuron. 2019 Mar 20;101(6):1029-1041. doi: 10.1016/j.neuron.2019.01.055. Neuron. 2019. PMID: 30897355 Review.
-
Interoceptive inference: From computational neuroscience to clinic.Neurosci Biobehav Rev. 2018 Jul;90:174-183. doi: 10.1016/j.neubiorev.2018.04.017. Epub 2018 Apr 22. Neurosci Biobehav Rev. 2018. PMID: 29694845 Review.
-
Self-control and interoception: Linking the neural substrates of craving regulation and the prediction of aversive interoceptive states induced by inspiratory breathing restriction.Neuroimage. 2020 Jul 15;215:116841. doi: 10.1016/j.neuroimage.2020.116841. Epub 2020 Apr 10. Neuroimage. 2020. PMID: 32283274
-
Active interoceptive inference and the emotional brain.Philos Trans R Soc Lond B Biol Sci. 2016 Nov 19;371(1708):20160007. doi: 10.1098/rstb.2016.0007. Epub 2016 Oct 10. Philos Trans R Soc Lond B Biol Sci. 2016. PMID: 28080966 Free PMC article. Review.
-
A computationally informed distinction of interoception and exteroception.Neurosci Biobehav Rev. 2024 Apr;159:105608. doi: 10.1016/j.neubiorev.2024.105608. Epub 2024 Mar 2. Neurosci Biobehav Rev. 2024. PMID: 38432449 Review.
Cited by
-
Statistical learning shapes pain perception and prediction independently of external cues.Elife. 2024 Jul 10;12:RP90634. doi: 10.7554/eLife.90634. Elife. 2024. PMID: 38985572 Free PMC article.
-
Pain, from perception to action: A computational perspective.iScience. 2022 Dec 1;26(1):105707. doi: 10.1016/j.isci.2022.105707. eCollection 2023 Jan 20. iScience. 2022. PMID: 36570771 Free PMC article. Review.
-
A parahippocampal-sensory Bayesian vicious circle generates pain or tinnitus: a source-localized EEG study.Brain Commun. 2023 Apr 20;5(3):fcad132. doi: 10.1093/braincomms/fcad132. eCollection 2023. Brain Commun. 2023. PMID: 37223127 Free PMC article.
-
A computational mechanism of cue-stimulus integration for pain in the brain.Sci Adv. 2024 Sep 13;10(37):eado8230. doi: 10.1126/sciadv.ado8230. Epub 2024 Sep 11. Sci Adv. 2024. PMID: 39259795 Free PMC article.
-
Unraveling Negative Expectations and Nocebo-Related Effects in Musculoskeletal Pain.Front Psychol. 2022 Mar 16;13:789377. doi: 10.3389/fpsyg.2022.789377. eCollection 2022. Front Psychol. 2022. PMID: 35369173 Free PMC article.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
