Detecting and quantifying social transmission using network-based diffusion analysis
- PMID: 32745269
- DOI: 10.1111/1365-2656.13307
Detecting and quantifying social transmission using network-based diffusion analysis
Abstract
Although social learning capabilities are taxonomically widespread, demonstrating that freely interacting animals (whether wild or captive) rely on social learning has proved remarkably challenging. Network-based diffusion analysis (NBDA) offers a means for detecting social learning using observational data on freely interacting groups. Its core assumption is that if a target behaviour is socially transmitted, then its spread should follow the connections in a social network that reflects social learning opportunities. Here, we provide a comprehensive guide for using NBDA. We first introduce its underlying mathematical framework and present the types of questions that NBDA can address. We then guide researchers through the process of selecting an appropriate social network for their research question; determining which NBDA variant should be used; and incorporating other variables that may impact asocial and social learning. Finally, we discuss how to interpret an NBDA model's output and provide practical recommendations for model selection. Throughout, we highlight extensions to the basic NBDA framework, including incorporation of dynamic networks to capture changes in social relationships during a diffusion and using a multi-network NBDA to estimate information flow across multiple types of social relationship. Alongside this information, we provide worked examples and tutorials demonstrating how to perform analyses using the newly developed nbda package written in the R programming language.
Keywords: culture; disease transmission; network-based diffusion analysis; social learning; social network analysis; social transmission.
© 2020 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.
Similar articles
-
Network-based diffusion analysis: a new method for detecting social learning.Proc Biol Sci. 2009 May 22;276(1663):1829-36. doi: 10.1098/rspb.2008.1824. Epub 2009 Feb 25. Proc Biol Sci. 2009. PMID: 19324789 Free PMC article.
-
The conceptual foundations of network-based diffusion analysis: choosing networks and interpreting results.Philos Trans R Soc Lond B Biol Sci. 2017 Dec 5;372(1735):20160418. doi: 10.1098/rstb.2016.0418. Philos Trans R Soc Lond B Biol Sci. 2017. PMID: 29061891 Free PMC article.
-
Detecting social learning using networks: a users guide.Am J Primatol. 2011 Aug;73(8):834-44. doi: 10.1002/ajp.20920. Epub 2011 Jan 18. Am J Primatol. 2011. PMID: 21246592 Review.
-
Choosing a sensible cut-off point: assessing the impact of uncertainty in a social network on the performance of NBDA.Primates. 2019 May;60(3):307-315. doi: 10.1007/s10329-018-0693-4. Epub 2018 Oct 9. Primates. 2019. PMID: 30302657 Free PMC article.
-
Dynamic Relationships between Information Transmission and Social Connections.Trends Ecol Evol. 2019 Jun;34(6):545-554. doi: 10.1016/j.tree.2019.02.007. Epub 2019 Mar 19. Trends Ecol Evol. 2019. PMID: 30902359 Review.
Cited by
-
Social learning mechanisms shape transmission pathways through replicate local social networks of wild birds.Elife. 2023 May 2;12:e85703. doi: 10.7554/eLife.85703. Elife. 2023. PMID: 37128701 Free PMC article.
-
Complex foraging behaviours in wild birds emerge from social learning and recombination of components.Philos Trans R Soc Lond B Biol Sci. 2022 Jan 31;377(1843):20200307. doi: 10.1098/rstb.2020.0307. Epub 2021 Dec 13. Philos Trans R Soc Lond B Biol Sci. 2022. PMID: 34894740 Free PMC article.
-
Simulated poaching affects global connectivity and efficiency in social networks of African savanna elephants-An exemplar of how human disturbance impacts group-living species.PLoS Comput Biol. 2022 Jan 18;18(1):e1009792. doi: 10.1371/journal.pcbi.1009792. eCollection 2022 Jan. PLoS Comput Biol. 2022. PMID: 35041648 Free PMC article.
-
Cultural diffusion dynamics depend on behavioural production rules.Proc Biol Sci. 2022 Aug 10;289(1980):20221001. doi: 10.1098/rspb.2022.1001. Epub 2022 Aug 10. Proc Biol Sci. 2022. PMID: 35946158 Free PMC article.
-
The ecology of ageing in wild societies: linking age structure and social behaviour.Philos Trans R Soc Lond B Biol Sci. 2024 Dec 16;379(1916):20220464. doi: 10.1098/rstb.2022.0464. Epub 2024 Oct 28. Philos Trans R Soc Lond B Biol Sci. 2024. PMID: 39463244 Free PMC article. Review.
References
REFERENCES
-
- Allen, J., Weinrich, M., Hoppitt, W., & Rendell, L. (2013). Network-based diffusion analysis reveals cultural transmission of lobtail feeding in humpback whales. Science, 340, 485-488. https://doi.org/10.1126/science.1231976
-
- Aplin, L. M., Farine, D. R., Morand-Ferron, J., Cockburn, A., Thornton, A., & Sheldon, B. C. (2015). Experimentally induced innovations lead to persistent culture via conformity in wild birds. Nature, 518, 538-541. https://doi.org/10.1038/nature13998
-
- Aplin, L. M., Farine, D. R., Morand-Ferron, J., & Sheldon, B. C. (2012). Social networks predict patch discovery in a wild population of songbirds. Proceedings of the Royal Society B: Biological Sciences, 279, 4199-4205. https://doi.org/10.1098/rspb.2012.1591
-
- Atton, N., Galef, B. J., Hoppitt, W., Webster, M. M., & Laland, K. N. (2014). Familiarity affects social network structure and discovery of prey patch locations in foraging stickleback shoals. Proceedings of the Royal Society B: Biological Sciences, 281, 20140579. https://doi.org/10.1098/rspb.2014.0579
-
- Atton, N., Hoppitt, W., Webster, M. M., Galef, B. G., & Laland, K. N. (2012). Information flow through threespine stickleback networks without social transmission. Proceedings of the Royal Society B: Biological Sciences, 279, 4272-4278. https://doi.org/10.1098/rspb.2012.1462
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
