Zinc-air flow batteries provide a scalable and cost-efficient energy storage solution. However, the achieved power density depends on the local flow conditions of the zinc particle suspension in the electrochemical cell. Numerical modeling is challenging due to the complex multiphase fluid and the interaction of flow and electrochemistry. Hence, performing experiments is crucial to investigate the influence of the flow conditions on the electrical performance, which requires flow instrumentation for the opaque suspension. To resolve the flow field across the 2.6-mm-wide flow channel of the investigated zinc-air flow battery (ZAB), a spatial resolution below 100 [Formula: see text] has to be typically achieved. Using ultrasound techniques, the achieved spatial resolution is limited by the trade-off between ultrasound frequency and imaging depth. This trade-off is even more critical for suspensions due to the scattering of the ultrasound, which increases strongly with frequency. We propose super-resolution particle tracking velocimetry (SRPTV) to overcome this limitation by achieving the required spatial resolution at a low ultrasound frequency. SRPTV is based on the super-resolution technique ultrasound localization microscopy, which is adapted to strongly scattering suspensions by using a dual-frequency-phased array and applying a coherence weighting beamformer to suppress speckles, which result from the scattering at the zinc particles of the suspension. The spatial resolution and the velocity uncertainty are characterized through calibration measurement and numerical simulation. A spatial resolution of 66 [Formula: see text] at an excitation wavelength of 330 [Formula: see text] was achieved, which is sufficient for performing flow investigation in an operational ZAB. The measured flow profile reveals shear-thinning properties and wall slip and therefore differs significantly from a parabolic flow profile of a Newtonian fluid. The presented technique offers potential for performing flow investigations of suspensions in small geometries with a spatial resolution beyond the diffraction limit.