Land productivity dynamics in and around protected areas globally from 1999 to 2013

PLoS One. 2020 Aug 5;15(8):e0224958. doi: 10.1371/journal.pone.0224958. eCollection 2020.


Tracking changes in total biomass production or land productivity is an essential part of monitoring land transformations and long-term alterations of the health and productive capacity of land that are typically associated with land degradation. Persistent declines in land productivity impact many terrestrial ecosystem services that form the basis for sustainable livelihoods of human communities. Protected areas (PAs) are key to globally conserve biodiversity and ecosystem services that are critical for human well-being, and cover about 15% of the land worldwide. Here we globally assess the trends in land productivity in PAs of at least 10 km2 and in their unprotected surroundings (10 km buffers) from 1999 to 2013. We quantify the percentage of the protected and unprotected land that shows stable, increasing or decreasing trends in land productivity, quantified as long-term (15 year) changes in above-ground biomass derived from satellite-based observations with a spatial resolution of 1 km. We find that 44% of the land in PAs globally has retained the productivity at stable levels from 1999 to 2013, compared to 42% of stable productivity in the unprotected land around PAs. Persistent increases in productivity are more common in the unprotected lands around PAs (32%) than within PAs (18%) globally, while about 14% of the protected land and 12% of the unprotected land around PAs has experienced declines in land productivity. Oceania has the highest percentage of land with stable productivity in PAs (57%), whereas Europe has the lowest percentage (38%) and also the largest share of protected land with increasing land productivity (32%). We discuss the observed differences between PAs and unprotected lands, and between different parts of the world, in relation to different types and levels of human activities and their impact on land productivity. Our assessment of land productivity dynamics helps to characterise the state, pressures and changes in and around protected areas globally. Further research may focus on more detailed analyses to disentangle the relative contribution of specific drivers (from climate change to land use change) and their interaction with land productivity dynamics and potential land degradation in different regions of the world.

Publication types

  • Research Support, Non-U.S. Gov't

Grant support

This study, the development and maintenance of the Digital Observatory for Protected Areas and the production of the land productivity map were supported mainly by the institutional activities of the Directorate D (Sustainable Resources) at the Joint Research Centre of the European Commission. We also acknowledge the contribution of the Biodiversity and Protected Areas Management (BIOPAMA) EU-ACP programme, an initiative of the African, Caribbean and Pacific (ACP) Group of States financed by the 10th and 11th European Development Funds of the European Union (EU). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.