LoRaWAN Gateway Placement Model for Dynamic Internet of Things Scenarios

Sensors (Basel). 2020 Aug 4;20(15):4336. doi: 10.3390/s20154336.


Extended Range Wide Area Network (LoRaWAN) has recently gained a lot of attention from the industrial and research community for dynamic Internet of Things (IoT) applications. IoT devices broadcast messages for neighbor gateways that deliver the message to the application server through an IP network. Hence, it is required to deploy LoRaWAN gateways, i.e., network planning, and optimization, in an environment while considering Operational Expenditure (OPEX) and Capital Expenditure (CAPEX) along with Quality of Service (QoS) requirements. In this article, we introduced a LoRaWAN gateway placement model for dynamic IoT applications called DPLACE. It divides the IoT devices into groups with some degree of similarity between them to allow for the placement of LoRaWAN gateways that can serve these devices in the best possible way. Specifically, DPLACE computes the number of LoRaWAN gateways based on the Gap statistics method. Afterward, DPLACE uses K-Means and Fuzzy C-means algorithms to calculate the LoRaWAN gateway placement. The simulations' results proved the benefits of DPLACE compared to state-of-the-art LoRaWAN gateway placement models in terms of OPEX, CAPEX, and QoS.

Keywords: IoT; LoRaWAN; gateway placement; resiliency; scalability.