Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2020 Jul 15:8:820.
doi: 10.3389/fbioe.2020.00820. eCollection 2020.

Improving Fucoxanthin Production in Mixotrophic Culture of Marine Diatom Phaeodactylum tricornutum by LED Light Shift and Nitrogen Supplementation

Affiliations

Improving Fucoxanthin Production in Mixotrophic Culture of Marine Diatom Phaeodactylum tricornutum by LED Light Shift and Nitrogen Supplementation

Runqing Yang et al. Front Bioeng Biotechnol. .

Abstract

Fucoxanthin (Fx), a kind of primary carotenoids in brown seaweeds and diatoms, has attractive efficacy in human's healthcare including loss weight, the prevention of diabetes and Alzheimer's disease. Marine diatom Phaeodactylum tricornutum is now realized as a promising producer for commercial Fx production due to its higher content of Fx than brown seaweeds with easily artificial cultivation and Fx extraction. In the present study, to improve Fx production in P. tricornutum, the mixotrophic cultures were applied to optimize initial cell density, light intensity, light regime and nitrogen supplementation. The results showed that the higher initial cell density (1 × 107 cells mL-1) and lower light intensity (20 μmol m-2 s-1) were favorable for biomass production and Fx accumulation. The maximal Fx content [16.28 mg g-1 dry weight (DW)] could be achieved under blue light (BL), but the highest biomass concentration (5.53 g L-1) could be attained under red: blue light (R: B, 6:1) in the batch culture. A novel two-phase culture approach was developed to increase the biomass concentration to the highest value (6.52 g L-1) with the maximal productivity of Fx (8.22 mg L-1 d-1) through light shift from R:B ratio (6:1) in phase 1 to R:B ratio (5:1) by enhancing BL and tryptone addition in phase 2. The content and intracellular amount of Fx were also increased 8% and 12% in phase 2 compared to phase 1. The expression levels analysis revealed that genes encoding phytoene synthase (PSY), zeaxanthin epoxidase (ZEP), and fucoxanthin-chlorophyll-protein b (FCPb) were upregulated significantly, with downregulation of the gene encoding violaxanthin de-epoxidase (VDE), leading to the improvement of Fx in phase 2. The present study demonstrated the two-phase culture strategy could promote Fx productivity through enhancing biomass production and increasing Fx content, indicating that strengthening BL coupled with adding tryptone were effective to facilitate Fx production by mixotrophic cultivation of marine diatom P. tricornutum.

Keywords: Phaeodactylum tricornutum; fucoxanthin; light regime; qRT-PCR; two-phase culture.

PubMed Disclaimer

Figures

FIGURE 1
FIGURE 1
Effects of initial cell density and light intensity on cell growth (A,B), biomass concentration and fucoxanthin content (C,D) in the mixotrophic growth of P. tricornutum. Significant differentiation level was set at * p < 0.05 and ** p < 0.01 compared with initial cell density of 1 × 107 cells mL– 1 and light intensity of 20 μmol m– 2 s– 1, respectively.
FIGURE 2
FIGURE 2
The light spectrum of white light (WL) and various red: blue lights (1:0, 6:1, 1:1, 1:2, 0:1) (A) and light regimes in the two-phase culture (B).
FIGURE 3
FIGURE 3
The cell growth (A), biomass (B) and glycerol concentration (C), fucoxanthin production (D) at white light (WL) and various red: blue lights (1:0, 6:1, 1:1, 1:2, 0:1). Significant differentiation level was set at * p < 0.05 and ** p < 0.01 compared with white light (WL).
FIGURE 4
FIGURE 4
Effects of light shift and nitrogen supplementation on cell growth (A,C) and fucoxanthin production (B,D) in two phase of two batch cultivation. In batch 1 (A,B), the mixotrophic cells grew at R: B light (6:1) for 6 days in phase 1, then light shifted to pure blue light (BL) with (+) nitrogen supplementation in phase 2. Nitrogen source was presented as urea (U), tryptone (T) and their mixture at a ratio (T:U = 1:1, N mol). Significant differentiation level was set at ** p < 0.01 compared with blue light (BL) shift. In batch 2 (C,D), blue light was strengthened solely to form R: B lights (5:1, 3:1, 1:1), or shifted to pure blue light (BL) or pure green light (GL), respectively, with (+) tryptone (T) addition in phase 2. Significant differentiation level was set at * p < 0.05 and ** p < 0.01 compared with blue light shift with tryptone addition (BL + T) in batch 2.
FIGURE 5
FIGURE 5
Bioprocess analysis of R: B (5:1) + T group in the batch 2. Production and nutrient consumption (A,B) in two-phase culture, fucoxanthin content and intercellular amount (C), genes expression levels in fucoxanthin biosynthesis pathway on the 6th, 8th, 10th, 12th days in phase 2 (D). Significant differentiation level was set with * p < 0.05 and ** p < 0.01 compared with that at 6th day in phase 1, respectively. The color boxes indicate the expression values of log2FC (8th/6th), log2FC (10th/6th), and log2FC (12th/6th).

Similar articles

Cited by

References

    1. Azuara M. P., Aparicio P. J. (1983). In vivo blue-light activation of chlamydomonas reinhardii nitrate reductase. Plant Physiol. 71 286–290. 10.1104/pp.71.2.286 - DOI - PMC - PubMed
    1. Bertrand M. (2010). Carotenoid biosynthesis in diatoms. Photosyn. Res. 106 89–102. 10.1007/s11120-010-9589-x - DOI - PubMed
    1. Bowler C., Allen A. E., Badger J. H., Grimwood J., Jabbari K., Kuo A., et al. (2008). The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456 239–244. 10.1038/nature07410 - DOI - PubMed
    1. Ceron-Garcia M. C., Fernandez-Sevilla J. M., Sanchez-Miron A., Garcia-Camacho F., Contreras-Gomez A., Molina-Grima E. (2013). Mixotrophic growth of Phaeodactylum tricornutum on fructose and glycerol in fed-batch and semi-continuous modes. Bioresour. Technol. 147 569–576. 10.1016/j.biortech.2013.08.092 - DOI - PubMed
    1. Chen J. H., Liu L., Wei D. (2017). Enhanced production of astaxanthin by Chromochloris zofingiensis in a microplate-based culture system under high light irradiation. Bioresour. Technol. 245 518–529. 10.1016/j.biortech.2017.08.102 - DOI - PubMed

LinkOut - more resources